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Abstract: Radial Basis Function (RBF) networks is
known as efficient method in classification problems and
function approximation. The basis function of RBF
networks is usual adopted normal distribution like the
Gaussian function. The output of the Gaussian func-
tion has the maximum at the center and decrease as
increase the distance from the center. For learning of
neural network, the method treating the limited area of
input space is sometimes more useful than the method
treating the whole of input space. The g-normal distri-
bution is the set of prbability density function include
the Gaussian function. In this paper, we introduce the
RBF networks with the basis function of gq-normal dis-
tribution and actually approximate a function using the
RBF networks.

1. Introduction

The Radial Basis Function(RBF) networks have turned
out to be among the most powerful artificial neural net-
work types, e.g. in the area of function approximation,
pattern classification and data clustering.

The RBF networks are multilayer feedforward-type
neural networks, using radially basis functions. While
the multilayer perceptron (MLP) networks used Back-
Propagation (BP) are known to be slow in convergence
and often trapped in local minimum in the parameter
spaces, the RBF networks are fast in convergence to the
optimum point and have excellent fitting ability.

Other main difference between the architectures of
MLP and RBF is the separation surfaces implemented
in classification problems. The MLP networks separate
classes by building hyperplanes in the input space. An-
other side, RBF networks divide the input space into
some sub-spaces and only a few hidden RBF units rep-
resent each sub-space.

In the point of function approximation, the MLP net-
works approximate a function as the sum of sigmoid
functions. On the other hands, function approximation
of the RBF networks makes use of particular basis func-
tions that affect the input-data in the only limited area
of input space. When we approximate functions, the
method treating limited area of input space is some-
times more useful than the method treating the whole
of input space.

Many probability density functions for the basis func-
tion of RBF networks are proposed. Among them, the
Gaussian function is generally used. The output of the

Gaussian function has the maximum at the center and
decrease as increase the distance from the center.

On the other hands, Masaru Tanaka proposed gq-
normal distribution(2002). The g-normal distribution
is the set of probabililty density function include the
Gaussian function as a particular state. Because the g-
normal distribution include the Gaussian function, we
can think that the g-normal distribution is more useful
than the Gaussian function at least.

In this paper, we propose the RBF networks with
the basis function of the g-normal distribution. And we
carry out function approximation using the g-normal
distributions for every g, and we investigate the results.

2. Radial Basis Function Networks

We introduce the Radial Basis Function(RBF) networks
proposed by Moody and Darken (1989). The RBF net-
works are multilayer feedforward-type neural networks,
using radially basis functions as the activation function
of the hidden nodes. The RBF networks have shown to
be universal approximators, which means that they can
approximate any function to any desired degree of accu-
racy. They are fast in convergence to the optimum point
and have excellent fitting ability as compared with the
conventional multi-layer perceptron networks. The RBF
networks are networks which outputs are calculated by
carrying out linear combination of the output of the ba-
sis function. Fig.1 shows the general structure of the
RBF networks with M inputs and P outputs. When
the Gaussian RBF is used as the activation function (¢
Fig. 1) of the hidden nodes, the basis function ¢, is
represented mathematically as

bm (2) =exp{l_(f_“_f.‘_’£_)_}, 1)
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where z is an input data, y is a point in the input space
(for example, a center of the corresponding cluster), and
o is a variable which represents the extent of affected
space of the basis function in the input space.

When the Gaussian function is used as the basis func-
tion, we obtain the output f(z) of the network as linear
combination of the outputs of the middle layer elements
as follow:

M
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where M is the number of the hidden nodes, wy; is the
weight between the kth output and ith input, and G(z)
is called normalization constant, which is the reciprocal
of the linear combination of middle layers, like follow:

I S

Among the many learning algorithms, the k-means clus-
tering scheme for the center positions, the k-nearest
neighbors for the width parameter, and the gradient-
descent method for the weight parameters are very pop-
ular, which are adopted in this paper. The center po-
sitions and the width parameters are determined adap-
tively during the operation of the system. Based on this
setup and the universal uniform approximation property
of the RBF networks, the approximation error is small
and satisfies the condition, provided that the number
of layers of the RBF networks used is large enough and
the learning time is long enough, which is guaranteed
by theory. The RBF networks with the basis function
of Gaussian distribution are the networks, which sup-
ports only the domain set the basis function, because
the Gaussian function has the maximum at the center
and decreases as increase the distance from the center.

G (z) 3)

X1
Fig.1: General structure of the RBF networks.

3. The g-normal distributions

The g-normal distribution is the set of probability den-
sity functions rely on the parameter ¢, and it include
Gaussian function. Because the g-normal distributions
is smooth on ¢ and it represents the Gaussian function
at ¢ = 1, we can expect that we get more performance in
the field adapted the g-normal distributions than Gaus-
sian. The g-normal distributions is defined as follow:

1 1-g(x—p)? |70
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where Z, is normalization constant as

7,= [as{a- }#

Note that the probability density functions must be non-
negative. So we introduce cut-off z_ and z, into it
under ¢ < 1 as follow:

1-gq(@-p?’
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In the g-normal distribution at some parameter g, we
can find the probability density function that was dis-
covered and used independently until now. Also, be-
cause g-normal distribution is smooth on g, it is able
to connect their probability density function smoothly.
We give the typical examples as follows.

The g-normal distribution represents Gaussian func-
tion at g = 1.0,

1 (z — p)?
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the probability density function is called t-distribution.
In this equation, variance o2 is interpreted as a scale
factor.

Moreover at ¢ = 2.0,

1
B(3:3
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202 } ’
the probability density function represent Cauchy-
distribution, and also in this equation variance o? is
interpreted as a scale factor.
In Fig.1 we show some graph of g-normal distribution
on various parameter g.

p2(z)

4. Experiment

We experiment for the accuracy on ¢ of the function
approximation using the RBF networks with the basis
function of the g-normal distribution. As input data, we
adopt the data which quantized the function like Fig.3
and Fig.4.

First, we quantized the horizontal axis of this func-
tion for every 0.1 and use those quantized points input
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Fig. 2:The g-normal distributions for various g
(p=0,0=1).

data of the function approximate. Next, we simulate
the function approximate until the sum total of a mean
squared error with all input data became smaller than a
fixed value. Last, we ask for the mean squared error be-
tween original functions and the approximated function
for every q. And we seek the optimal parameter q.

In Fig.5, we denote the transition of mean square er-
ror between the output of the input function and the
corresponding approximate function on g. Moreover in
Fig6 and Fig7, we show the result of function approxi-
mate at some g. In Fig.5, the vertical axis expresses the
mean squared error between original functions and the
approximated function for every g, and the horizontal
axis expresses value of parameter q. In Fig.6 and Fig.7,
we drew the approximated function.

5. Conclusion and future works

In this paper, we proposed the RBF networks with the
basis function of the g-normal distribution. And we car-
ried out function approximation using the g-normal dis-

) R ) o I R I L.

Fig.3 : input data A Fig.4: input data B
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Fig.5 : the mean squared error between
original functions and the approximated function for q.

tributions.

It is seen that the approximated function by RBF
networks becomes smooth as increase the parameter ¢
of the g-normal distributions. But if it becomes larger
than a fixed value, the mean square error between the
outputs of the original function and the corresponding
approximate function increase. We can guess that it is
due to existence of the suitable value of the parameter
g depending on an approximating function.

As future works, we are going to approximate more
large number of functions, and determine the suitable
value of the parameter ¢ depending on an approximat-
ing function and the suitable number of the sampling
points to recover the original function through the our
approximation method to find the relation with the sam-
pling theorem.
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Table 1:the value of ¢ which makes the minimum
of the mean squared errors.

function A | function B
q 0.1 16
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Fig.6 : The result of approximation function A on q.
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Fig.7 : The result of approximation function B on q.
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