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Abstract: This paper presents a new stochastic binary
neural network based on the Hopfield model. We ap-
ply the proposed network to TSP and compare it with
other methods by computer simulations. Furthermore,
we apply 2-opt to the proposed network to improve the
performance.

1. Introduction

Neural networks are models of the brain’s cognitive pro-
cess and have a potential to realize advanced informa-
tion processing. It is well known that the Hopfield neu-
ral network can be used for solving combinatorial opti-
mization problems based on its energy function decreas-
ing monotonically. However, in general, it is difficult to
get the global minimum, which corresponds to the op-
timal solution, because the energy function has many
local minima that we finally get starting from several
initial states. Namely, it completely depends on the
initial state of networks whether we can get the global
minimum or not.

The Boltzmann machine is a stochastic neural net-
work which is obtained by replacing the deterministic
output function of neurons in Hopfield model with a
stochastic one. Due to its stochastic behavior, the Boltz-
mann machine can reach the global minimum without
converging to local minima. There are also attempts
to add some noise in order to lead the network to the
global minimum escaping from local minima [1}. Fur-
thermore, research efforts have been devoted to chaotic
neural networks {2], in which each neuron can exhibit
chaotic behavior, that is, it behaves randomly in spite
of its deterministic output function. It should be noted
that the important common feature of the above neural
networks is their stochastic or random nature.

In this paper, we propose a new stochastic binary
neural network based on the Hopfield model, which are
different from conventional ones [3]. We analyze charac-
teristics of the proposed neural network concerning the
performance for solving the traveling salesman problem
(TSP) which is one of well-known combinatorial opti-
mization problems. Some comparisons with other meth-
ods are also given.

2. Hopfield Neural Network

In this paper, we consider neural networks with n neu-
rons. Here, i-th neuron is linked to the j-th neuron with

a synaptic weight w;;. Let u;(t) and X;(t) be the state
and output of the i-th neuron at the time ¢ in a network,
respectively. Each of u;(t) and X;(t) is 1 or 0. The state
of the ¢-th neuron is updated as

1 (f 3 wi; X;(t) > 0)
u(t+1)=14 0 (if T wiX;()<0) (1)
ui(t) (if  32;wi; X;(t) =0).

In the Hopfield network, X;(t) = u;(t) holds. The
energy function in a network is defined by
1 n n
E@) = —EZZwijui(t)Uj(t). (2)
i=1j=1
In the Hopfield network, it is known that energy
function decreases monotonically while the state of each
neuron is updated asynchronously. It enables us to solve
combinatorial optimization problems. However, in gen-
eral, the energy function given by eq.(2) has many local
minima. Hence we cannot get the global minimum from
many initial states.

3. A New Stochastic Binary Neural
Network
In this paper, we propose a new stochastic binary neu-
ral network based on the Hopfield model. The state of
each neuron is updated in the same way as the Hopfieid
model. However, the output is define by

Xi(t) = { ui(t) (with probability 1 — p)

1~ ui(t) (with probability p), 3)

as shown in Fig.1. Namely, the output is stochastic.
Hence, even if we reach a local minimum, we can get out

of it. Thus, we apply this model to TSP and investigate
its perfomance.
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Figure 1: Proposed neuron model
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Figure 2: A 10-city model

4. Traveling Salesman Problem(TSP)

TSP(Traveling Salesman Problem) is one of well-known
combinatorial optimization problems. In the TSP, the
objective function is given by

¢ = =

YN

N N B N N
Z(Z wi =)'+ 35 ZJ:(Z uij — 1)°

i g
pXN NN
T2 DD duwu(ugen +uor), (4)
i kg
where, u;; is binary neurons, and w;; = 1(u;; = 0)

represents that city ¢ is (not) visited at the j-th order
(4, = 1,...,N), dit is the distance (or traveling cost)
between city ¢ and city k, and A, B, and D are adjust-
ing parameters related to convergence rate. In eq.(4),
the first term and the second term on the righthand side
denote the constraints such that

C1. The salesman visits each of all cities once.

C2. The salseman can visit only one city at once.

In this case, the energy function is given by
1
F= —Ezj:;wij,mnuijumn - Z:h,'juij (5)
£ 1)

where Wi mn
is a threshold

is a weight between u;; and um,p, and h;;
respectively given by

VVij,mn - - Aéim(l - 6jn) - B“jjn(1 e 6im)
= Ddim(6n,j+1 + bn j-1), (6)
hi; = A+ B, (7
where, 6;; denotes the Kronecker’s delta defined by
1 (z = ])
b = . . 8
i={o G20 ®)
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Figure 3: Percentages of the number of initial states
which leads to the optimal solutions at least once.

5. Computer Simulation

We take a 10-city model as an example which is shown
in Fig.2. By computer simulation, we try to solve the
TSP of this 10-city model using the proposed stochas-
tic neural network. For comparison, we also solve the
TSP by using the Boltzmann machine which is one of
conventional stochastic neural networks.

We perform such simulations changing the param-
eters p and T which are the probability in our model
and the temperature in the Boltzmann machine, respec-
tively. Note that each network tends to the Hopfield
model as p, T — 0, Simulation conditions are as fol-
lows.

e We use 100 different initial states for each p or 7'

e We update states of neurons 50,000 times from
each initial state.

e A=DB =10, D = 4.4 (determined empirically)

Fig.3 shows percentages of the number of initial
states which lead to the optimal solutions at least once
for each value of (@) the parameter p in the proposed net-
work and (b) the parameter T' in Boltzmann machine.
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Figure 4: Averaged update times till the network reach
the optimal solution

We can find that the percentage is about 10% for the
best parameter p in the proposed network and is about
74% for the best T in the Boltzmann machine.

Fig.4 shows averaged update times till the network
reach the optimal solution first for each initial state
which leads to optimal solutions for each value of p and
T.

Futhermore, Fig.5 shows percentages of initial states
which lead to states satisfying constraints C1 and C2
versus the average of the minimum distance obtained
from each initial state for each p or T'.

From these figures, we can find that the proposed
network is inferior to the Boltzmann machine if we got
the “good” parameters in advance. However, when we
use “bad” parameters, the proposed network is superior
to the Boltzmann machine in the sense that the con-
straints C1 and C2 are satisfied with higher probability.

6. Application of 2-opt
6.1 2-opt

We can improve a solution by using 2-opt [4] which can
eliminate crossing branches as shown in Fig.6.

The algorithm of 2-opt as follows. Let dap be the
distance between nodes (cities) A and B. Assume there
are two paths A — C and B — D, where C — --- — B.

L
The average of minimum distance

Figure 5: Percentages of initial states which lead to
states satisfying constraints C1 and C2
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Figure 6: Illustrative description of the algorithm of 2-
opt, where dyc + dgp > dap + dcp.

If dac + dgp > dap + dcp, we change the paths to
A — B and C — D, wherte B — --- — C. Thus, we
can shorten the total length of the route. Applying this
algorithm to every pair of paths, we can get a better
solution. Generally, this algorithm starts from an initial
route which is randomly given.

It is known that the average of the total length of
route obtained by 2-opt tends to double of the shortest
route as the number of cities increases [4]. Of course,
we need enormous computation time for a large number
of cities.

6.2 Applicattion of 2-opt to Stochastic Neural
Network

We apply 2-opt to the proposed network in order to
improve the solution. For comparison, we also apply
2-opt to the Boltzmann machine.

The algorithm is as follows.

Al. Update of state of the network continues until the
constrains C1 and C2 are satisfied.

A2. We apply 2-opt to the state satisfying the con-
strains.

A3. After improvement by 2-opt, return to Al.
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Table 1: Simulation results. (I) the percentages of initial
states which leads to the optimal solution. (II) average
of the number of update times until we get the optimal
solution.

Proposed | Boltzmann | 2-opt only
+2-opt +2-opt
D 99.64% 49.32% 92.56%
(1) 1702.2 1064.2 52.2

In this way, we can apply 2-opt to an initial state better
than random states.

6.3 Computer Simulation

Fig.7 shows an example of city configurations which are
intractable for 2-opt. For example, if we apply 2-opt
to an initial route as shown in Fig.8, we never get the
optimal solution as in Fig.7.

Thus, for the city configuration, we perform com-
puter simulations of the algorithm described in the sub-
section 6.2. For the proposed network and the Boltz-
mann machine, we update their states 50,000 times
from 10,000 random initial states, where the parame-
ters are given by p = 0.003,T = 0.13, A = B = 5.0, and
D =1.0.

Table 1 shows (I) the percentages of initial states
which lead to the optimal solution and (II) averages
of the number of update times until we get the opti-
mal solution. For comparison, Table 1 also shows the
results obtained by 2-opt only, where 10,000 random
initial routes are used.

We can find that the proposed network with 2-opt
can reach the optimal solution with much higher proba-
bility than the Boltzmann machine with 2-opt. But, the
average number of update times in the proposed method
is larger than the Boltzmann machine.

We also find that the proposed network with 2-ot
can reach the opimal solution with somewhat highter
probability but its average number of update times is
much larger than 2-opt only. This is considered to be a
kind of trade-off. Note that we obtained similar results
for several sets of parameters.

7. Conclusion

We have proposed a new stochastic binary neural net-
work. We investigated its performance of solving the
TSP, and compared it with the Boltzmann machine. As
a tesult, we found that the proposed network is inferior
to the Boltzmann machine if we have appropriate net-
work parameters. However the proposed network can
satisfy the constraints with higher probability even for
bad parameters than the Boltzmann machine.

Furthermore, we showed that the proposed network
with 2-opt can reach the optimal solution with higher
probability than the Boltzmann machine with 2-opt. We
will apply the proposed method to other various config-
urations with more cities in future.

Figure 7. An example of city configurations intractable
for 2-opt.

Figure 8: An example of initial routes which never reach
the optimal solution in Fig.7.

References

[1] Y. Hayakawa, A. Marumoto, and Y. Sawada, “Ef-
fects of the Chaotic Noise on the Performance of
a Neural Network Model for Optimization Prob-
lems,” Physical Review E, vol.51, no.4, pp.R2693-
R2696, 1995.

[2] K. Aihara, T. Takabe and M. Toyoda, “Chaotic
Neural Networks,” Physics Lellers A, vol.144,
n0.6,7, pp-333-340, 1990.

[3] A. Tsuneda, D. Kajiwara, T. Inoue, “A New Prob-
abilistic Neural Network and Its Characterristics”,
Proc. of the 23+d Symposium on Information The-
ory and His Application (SITA2000), pp.415-418,
Kumamoto, Japan, October, 2000. (in Japanese)

[4] D. J. Rosenkrantz, R. E. Stearns and P. M. Lewis,
“An analysis of several heuristics for the traveling
salesman problem,” SIAM Journal on Computing
no.6, pp.563-581, 1977.

ITC-CSCC 2002



