A Sector-Labeling for generating the Hilbert Space-filling Curve and Its Intention

Santosa Slamet! and Tohru Naoi?
1Department of Electronics and Applied Computer Science
Gifu University, Gifu, Japan
Tel. +81-58-230-1111, Fax.: +81-58-230-1895, E-mail: santosa@nao.info.gifu-u.ac.jp
2Department of Electronics and Applied Computer Science
Gifu University, Gifu, Japan
Tel. +81-58-230-1111, Fax.: +81-58-230-1895, E-mail: naci@nao.info.gifu-u.ac.jp

Abstract: Many scientific applications include manip-
ulation of data points lying in a space. We describe
a method, based on sector labeling to generate a space-
filling curve for partitioning such given data points. Our
method is straightforward and flexible, equipping a one-
one correspondence between point-values on the curve
and data points in space in more efficient than desig-
nated methods found in the literature. It is widely be-
lieved that the Hilbert curve achieves the desired prop-
erties on linear mappings due to the locality between
data points. Therefore we focus on the Hilbert curve
since, later on, we identify it as the most suitable for
our application. We demonstrate on using our method
for the data particles of an n-body simulation that based
on Barnes-Hut algorithm.

1. Introduction

The problem of assigning a large of data points to
massively parallel computing systems is one of impor-
tant tasks in the field of parallel processing. Moreover,
in the dynamic of non-uniform data points that aris-
ing in many scientific applications, including particle
simulations [1,2] and computational mechanics [3]. In
such applications, computation involves nearby points
through aggregations of data points. Therefore the ad-
jacent points should be assigned into the same processor
in order to minimize communications while computa-
tion. To solve such a load assignment efficiently, the
large data points have to be divided in balance while at
the same time locality of data points in each partition
should be maintained. Wei Ou and Sanjay Ranka [4]
and Hanan Samet [5] have shown that coordinate bit in-
terleaving constructs a space-filling curve that provides
good quality partition for an irregular problem. War-
ren and Salmon [6] have proposed a similar technique
for partitioning non-uniform data points (particles) in
an N-Body simulation. The technique is basically used
a mapping by indexing so that the data points continue
on a line and lying close each other. A key index is
used to distinguish a point, constructed by interleaving
it coordinates and the sorted keys produce a particular
sequence in Z-curve. However, since it jumps conduct
the discontinuity of spaces, partitions may not preserve
enough locality information of the data points. Pilking-
ton et al [7} have been suggested to use a Hilbert curve
through attempting on mapping a collection of points
that lie on a uniform grid. Each point is assigned an

index based on ’inverse’ Gray-code mapping converted
from its coordinates, which represents its approximate
position on the curve. However, to achieve such dis-
tinct indices for all the given data points many sector
rotations are needed, which may reduce the degree of it
possible implementation.

We propose in this paper a new alternative technique,
based on sector labeling to generate a Hilbert curve, for
partitioning the given data points. This approach leads
to simplicity, involve no complex bit interleaving oper-
ations. It is also quite flexible, it handles regular and
irregular data points in the same way. Given irregular
data points lying in a rectangular domain, we need to
find a decomposition for which each point is then lo-
cated in a different sector. We label the decomposed
sectors in such a way that the ordering of points rep-
resenting one-dimensional curve is established by their
Hilbert values. The curve imposes an order on points
located in the divided sectors i.e., a point assumes the
Hilbert value of its smallest enclosing sector. Having the
ordered data points, partitioning is then can be done as
was described in [6] and [7]. Note that, our Hilbert curve
representation is organized in a tree structure. In ad-
dition, we describe a technique for arranging the data
points across partitions. Each partition can has evenly
balanced data quantity but the length of a curve section
shall vary according to the local density of data points.
We had examined that our Hilbert curve based parti-
tioning provides a useful technique, which facilitates on
easy linking the nodes of tree.

This paper is organized as follows. Section 2 describes
a brief space-filling curve in conjunction with partition-
ing. Section 3 presents in detail the domain decom-
position and how the mapping is computed. Section 4
shows a practical application on using the Hilbert curve.
We made a brief locality comparison with that occupy
Z-curve ordering in section 5. Section 6 includes our
conclusions.

2. Space-filling curves and Partitioning

Methods for manipulating space-filling curves are
typically based on a geometric manipulation of how the
domain decomposes into multiple smaller versions and
linked together. For ease of illustration, we deal with
the curve’s generation as labeling the divided sectors in
two dimensions, since it expresses the concept of space-
filling curves in a simple manner.

ITC-CSCC 2002

Space-filling curve can also be thought of how to or-
der the decomposed sectors in such a way that labeling
each sector appropriately perform the self-similar con-
struction of the curve. For a rectangular domain decom-
position of level k, one can associate a one-to-one map-
ping Lx : {1,...,2¥} x {1,...,2%¥} = {1,...,2?}. This
mapping specified labeling of level k that linearly orders
22% sectors and defines a curve on the original rectangu-
lar domain. For an irregular data points lying in such a
rectangular domain we can therefore continuously sub-
divide the domain till all divided sectors contain no more
than one point. Thus the data points are ordered and
there is a one-one correspondence between labels on the
curve and the points in space domain. There are many
space-filling curves in the literature [8] but we concen-
trate on a Hilbert space-filling curve for our partitioning,
since it is widely believed that the Hilbert curve achieves
the desired properties on linear mappings [9].

Sector labeling can be performed on the decom-
posed sectors such that the sequence of labeled sec-
tors sy, 82, . . ., Sn indicates their positions on the Hilbert
curve. As a result of the recursive fashion in which a
rectangular domain is decomposed, such a mapping can
be expressed as a tree structure. In practical applica-
tions of irregular data points the decomposition is ter-
minated after k levels such that the smallest enclosing
sectors, with n € 2%%, construct the curve of order k.
Since each sector contains a point, the order in which
the curve visits the smallest enclosing sectors also de-
termines the order in which the curve visits the points.

Partitioning the data points includes the generation
of a Hilbert curve, i.e., ordered the decomposed sectors
by a sector labeling and cutting the curve into partitions
in such a way that balance the loads upon a particu-
lar application. Having such partitions, the data points
are then assigned into processors, while the locality is
preserved. This leads into possibility on reducing com-
munication overhead since the Hilbert curve does not
involve spatial discontinuities.

3. Sector decomposition and its labeling

In general, Hilbert curve starts with a basic path that
can be drawn as a U-shape on a two-dimensional do-
main. The sector domain enclosing the given data points
is subdivided into four sub-sectors, to which the basic
path visits exactly once without crossing itselves. The
basic path is called as order 1. To derive a curve of order
k, each vertex of the basic curve is replaced by the curve
of order k — 1, which may appropriately rotated and/or
reflected. Figure 1 shows examples of two-dimensional
Hilbert curve. We clarify that a curve is in order £ when
the curve associates with the decomposition of level k.

We refer to the labels as the Hilbert values, which are
used to order the divided sectors. Such an ordering is
continuous, due to continuity of the Hilbert curve, i.e.
sectors adjacent in the order are closest in space. Since
a single point assumes a Hilbert value of its smallest
enclosing sector, the sector ordering induces the ordering

First order Second order Third order

i (I N N S e

:l] I i EJ LH |

[L"]rﬁ!__:' [___Ir’-}

3 M}

0L 1503

A]

T L L_Imu L_lml__J

Figure 1: Two dimensional Hilbert curve

of data points in the sequence of the curve. We used
the following strategy to determine subdivision level to
ensure that each point is located in a different sector.
Suppose a divided sector at any level k that has two
nearest points close to the opposite ends of a diagonal.
Clearly, the smallest sector that encloses each point of
these two points is of level k + 1, at which the recursion
is then terminate. This could be done by first finding
nearest distance between two points of the given data
points and comparing the distance with the diagonal of
being built sector.

The decomposition starts with defining an original
sector, a square [0, 1] that large enough to contain the
given data points, which then repeatedly subdivides into
four sub-sectors. Hence, each sector has four equal size
child-sectors, and these divisions build a quad-tree with
the root corresponds to the original sector. A node of
the quad-tree includes information concerning the corre-
sponding sector i.e., the anchor z,y, the node’s lengths
lz,ly, the number of data points n, a label in charac-
ters, a pointer to the given data points xpoints and four
pointers to the child-sectors *subsector{4]. The follow-
ing describes the sector decomposition, tree construction
as well as labeling the divided sectors.

Input:
1. A set of data points (X,Y'), stored in an array a
2. Domain sector contains the data points as root node

Output:
A list L of smallest enclosing sectors, organized as a
queue

int decompSector:

1. Initialize a pointer root = NULL;

2. Create an empty list L;

3. root=qBuild(&L, z,y,lz,ly,n,al], ¢ factor = 0.0);
4. Return 0;

node *qBuild: variable i: integer;
1. Declare a node’s pointer p;
2. If (non empty L)
dequeue (p, L); Endif;
3. If (¢factor = 0.0)
assaign p to point to current node; {root node}
gfactor = addPoint (p, af], n);
{plot points and find nearest distance}
if (there are no valid point in root)
free (p);
return NULL;

ITC-CSCC 2002

endif;
Else
if (current node’s diagonal < gfactor)
return NULL;
endif;
p = malloc (sizeof(node));
addPoint (p, af], n); {use current gfactor}
Endif;
. Label (p);
 quee (L, p);
6. For (i =0;i < 4;i++)
p — subsector(i] =
qBuild (&L, z,y,1z/2,1y/2,n,a[], ¢ factor);
Endfor;
7. Return p;

double addPoint:
variable i,i: integer; factor = double;
1. Declare a node’s pointer p;
2. For (i=1i<n;i++)
Determine the data point in current node;
realloc (p — points, (p — npoint+1) *
sizeof(point));
p — points[(p — npoint)++] = afjl;
Endfor; .
3. If (p - npoint > 1)
Find distance between pair of data points;
factor = minimum distance of data points;
Endif;
4. Return factor;

[SA0N"-N

Each time the function qBuild is called, the node is
sub-divided to a greater level of details in which if v is
a node at level k then vy, va, v3, v4 are the divided sub-
nodes, while the level growing from & to k 4+ 1. Our la-
beling procedure therefore can be described in the term
of square matrix operation. Initially let root node be la-
beled 0. Let M = [r][c] be a 2" x 2" square matrix which
each of it elements is a square matrix of 2°~1 x 2"~1,
At the first division, let n = 1 and the elements of M :
rie; = 1,rcg = 2,72¢; = 0,72¢2 = 3 are appended
to the root node label that corresponding to the sec-
tor labeling of level £ = 1. The sector labeling grows
for greater levels in the following way. Define a square

matrix
L= (for) gt)

The function f(M) replaces M = [r][¢c] by M = [m+1—
¢][n + 1 — r] and the function g(M) replaces M = [r][c]
by M = [c][r] respectively. The labels of sectors at level
k + 1 are obtained by appending the elements of L to
the labels of sectors at level k.

4. Application of the Hilbert-curve

We now describe how the Hilbert curve based parti-
tioning in a practical application. We refer to the data
points as the data particles in which their interactions
treated based on Barnes and Hut (BH) algorithm [1].
Note that in BH algorithm, the method has two steps:

upward evaluation of the center of mass for every node
and downward evaluation for force calculation on each
particle. The center of mass is computed recursively by
calculating the sub-nodes center of mass first, and then
uses the results to calculate the center of mass of a node.
In the following, we assume that the data particles have
been partitioned among processors of a parallel com-
puter and we will limit the discussion on evaluation of
the center of mass.

The sequential recursive fashion is outlined below. If
a node v has sub-nodes v;, calculate these sub-nodes
center of mass, and then use the results to calculate the
center of mass of v.

calculateCenterOfMass (node v):
if v is a leaf then return;
for each node v; which is a sub-node of v
calculateCenterOfMass (v;);
SUM weighted center of mass of v;;
SET center of mass of v;
return;

Having in part the center of mass of nodes level k —
1 computed in a processor, to compute its lower level
the procedure introduces a request for center of mass of
internal nodes computed in the other processors. Upon
receipt such a broadcast message, a processor merges
the data appropriately into local tree. The Hilbert curve
adapts properly on updating the nodes, i.e. insertion of
received data center of mass into local tree structure.

Level 0

Level 1

Level 2

Level 3

searched
node

Figure 2: Searching on tree representing Hilbert curve

Each section is indicated by its lowest and highest
Hilbert values, referred as section-keys, to which the
curve will be concatenated. We describe insertion of
nodes using an example, in terms of descending the tree
representation of the Hilbert curve. Figure 2 shows a
tree structure that the labeled nodes at each level repre-
sent the Hilbert curve. We assume that each processor
has been identified its own section-keys, and a right-
insert uses the highest value as the current-key, which
in this example is the value is '0223’. Similarly, a left-
insert can be done in the same manner. Note that the
insertion precedes by searching in binary fashion for the
next sub-nodes in tree labeled with the values which are
greater than current-key. The search begins at the root,
descends and terminates at the next-match, which in
this example is the value 0230°, as follow:

ITC-CSCC 2002

Tree level 0: The root node contains both the current-
key and the next-match.

Tree level 1: A binary tree search for right-insert dis-
cards the nodes labeled 00’ and '01l’, because the top
two digits of the current-key are ’02’. We can deduce
that the next-match is might found in a node, which is
a descendent of node labeled '02’, since the value of final
two digits of current-key is least than ’33’. Therefore the
search can proceed to the sub-nodes at level 2 pointed
to by the node labeled '02’.

Tree level 2: The search now downed one level into
the nodes at level 2. Due to the top three digits of
the current-key that are ’022’, the search discards the
nodes labeled 020’ and ’021’. Therefore the next-match
presumably within a node that is the descendent of node
labeled ’022’ or ’023°. However, since the value of final
digit of current-key is ’3’ and the nodes are logically
ordered upon the sector decomposition, then the search
therefore can reject the node labeled '022’.

Tree level 3: The search continues one level to the
nodes at level 3 pointed to by the node labeled ’023’.
At this level the search found the next-match, the node
labeled ’0230°.

5. Locality preservation

We briefly compare locality behavior induced by two
different partitioning strategies, which might fulfills the
needs of parallel N-body simulation.

P %

(a) (b}

Figure 3: Partitioning based on space-filling curves

A discrete space-filling curve of level k, Ci :
{1,...,25) « {1,...,2%} — {1,...,2%¢} fulfills dp =
(H(3),H(i + 1)) = 1, ie. a segment ||(i + 1) — if|
represents an Euclidean distance on the curve in one
unity. We mean by locality of a partition as if accord-
ing to the ordering it holds that |i — j|| small then
d(i,3) = v/(&(0) — 2(7))? + (0(®) - y(3))? shall also be
small. Figure 3 shows partitioning schemes based on
space-filling curves. We assume that the data particles
have been partitioned among processors based on both
Z-curve and the Hilbert curve respectively. In case of Z-
curve (figure 3a), due to the distance on the curve, the
data particles lying in sector B might partitioned into
different processors with particle p; while those lying in
sector A might partitioned into the same processor with
particle ps. This causes when traversing the node B for

force calculation on p; in BH algorithm the data points
are not found and need an exchange for those essential
data points, while when calculating force on py no com-
munication 1s needed. This implies for the N-Body sim-
ulation, that a lot of communications are needed when
computing the forces on particles about py. In contrast
in the case of the distance on Hilbert curve (figure 3b),
both the data particles lying in sector B and A are could
be partitioned into the same processor with particle p;
and p; respectively.

6. Conclusions

We have described a sector labeling for manipulating
the Hilbert space-filling curve. The method leads to a
simplicity and robust approach, manages to avoid com-
plex bit interleaving operations, with certain flexibility
in handles regular and irregular data points.

This approach leads to creating algorithms, e.g. find-
ing nodes or points in the neigbor partitions, with re-
spect to a space-filling Hilbert curve. Note that back-
tracking may take place but not always necessary and
a next-match is guaranteed to exist. This is useful for
particular applications, as we have shown an example in
an N-Body simulation.

References

[1] J. Barnes and P. Hut, “A Hierarchical O(N log N)
Force-calculation Algorithm,” Nature, Vol. 324, pp.
446-449, 1986.

[2] L. Greengard and V. Rokhlin, “A Fast Algorithm for
Particle Simulations,” J. Comp. Physics, Vol. 73, pp.
325-348, 1987.

[3] B. Hendrickson and K. Devine, “Dynamic load bal-
ancing in computational mechanics,” Comp. methods
in applied mechanics and engineering, Vol. 184, pp.
485-500, 2000.

{4] CW. Ou and S. Ranka, “Parallel Remapping Algo-
rithm for Adaptive Problems,” IEEE Frontier 95, The
fifth Symposium on The Massively Parallel Computa-
tions, pp. 367-374, 1995.

[5] H.Samet, “The Design and Analysis of Spatial Data
Structure,” Addison Wesly Publishing Company, Inc.,
1990.

[6] MS. Warren and JK. Salmon, “A Parallel Hashed
Oct-Tree N-Body Algorithm,” Proceeding Supercom-
puting, The best student paper, 1993.

[7] JR. Pilkington and SB. Baden, “Dynamic Partition-
ing of Non-uniform Structured Work-load with Space-
filling Curves,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 7(3), pp. 288-299, 1996.

[8] B. Moon, HV. Jagadish, C. Faloutsos and JH. Saltz,
“Analysis of tha Clustering Properties of Hilbert
Space-filling Curve,” IEEE Transaction on Knowl-
edge and Data Engineering, 1996.

[9] DJ. Abel and DM. Mark, “A Comparative Analy-
sis of Some Two-dimensional Orderings,” Int. J. Ge-
ographical Information Systems, Vol. 4(1), pp. 21-31,
1990.

ITC-CSCC 2002

