A k-Tree-Based Resource (CU/PE) Allocation for Reconfigurable
MSIMD/MIMD Multi-Dimensional Mesh-Connected Architectures

Jeeraporn Srisawat' Wanlop Surakampontorn® and Nikitas A. Alexandridis®
IFaculty of Science, King Mongkut’s Institute of Technology Ladkrabang
Bangkok 10520, THAILAND
%Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang
Bangkok 10520, THAILAND
3Department of Electrical and Computer Engineering
School of Engineering and Applied Science
The George Washington University
Washington, DC 20052, USA
e-mail: ksjeerap@kmitl.ac.th, kswanlop@kmitl.ac.th, alexan@seas.gwu.edu

Abstract: In this paper, we present a new generalized k-Tree-based
(CU/PE) allocation model to perform dynamic resource (CU/PE)
allocation/deallocation decision for the reconfigurable MSIMD/
MIMD multi-dimensional (k-D) mesh-connected architectures.
Those reconfigurable multi-SIMD/MIMD systems allow dynamic
modes of executing tasks, which are SIMD and MIMD. The MIMD
task requires only the free sub-system; however the SIMD task
needs not only the free sub-system but also the corresponding free
CU. In our new k-Tree-based (CU/PE) allocation model, we
introduce two best-fit heuristics for the CU allocation decision: 1)
the CU depth first search (CU-DFS) in O(kNg) time and 2) the CU
adjacent search (CU-AS) in O(k2%) time. By the simulation study,
the system performance of these two CU allocation strategies was
also investigated. Our simulation results showed that the CU-AS
and CU-DFS strategies performed the same system performance
when applied for the reconfigurable MSIMD/MIMD 2-D and 3-D
mesh-connected architectures.

1. Introduction

A partitionable multicomputer is a special type of parallel systems
that provides (at run time) for executing various independent
parallel/distributed applications (or tasks) on different sub-systems
in parallel. For this system, each of these tasks requests an MIMD
mode. The more flexible partitionable parallel system, called the
reconfigurable multi-SIMD/MIMD system, provide independent
sub-systems for the requested tasks, executing in the SIMD and
MIMD modes. At run time some tasks may call the SIMD mode
(which is good at synchronization and communication) whereas
some tasks may need to execute independent branching or different
instructions (which are suitable for the MIMD mode). Therefore,
the dynamic reconfigurable MSIMD/MIMD parallel architecture has
become increasingly important for the parallel and distributed
computing environment, The SPP MSIMD/MIMD architecture {1]
is the flexible design of reconfigurable MSIMD/MIMD systems
since the roles of its processors, called CPEs (control processor
elements), will be assigned to be either PE or CU at run time. This
architecture performs dynamic reconfiguration at the network level
(for any independent SIMD/MIMD task) not at the instruction level
(that reconfiguring by altering the connections between the PEs in
order to match the task graph or particular algorithm.)

In such a reconfigurable MSIMD/MIMD environment, a
number of independent tasks (of the same or different applications)
come in. Each of these tasks requires (at run time) a separate sub-
system (or partition) to execute in either the SIMD mode or the
MIMD mode. At the front-end computer, a special designed OS
(known as the resource allocator and task scheduler) will provide
appropriate free sub-systems for the new incoming task(s). In
particular, that OS has to dynamically find the location of a free sub-

: This research was supported by the Thailand Research Fund
under Grant PDF44-Jeeraporn Srisawat.

system in order to allocate for each incoming task, as well as to
deallocate a busy sub-system and recombine partitions as soon as
they become available when a task completes. In the reconfigurable
MSIMD/MIMD systems, the requested MIMD mode requires only
the free sub-systems but the requested SIMD mode needs both the
free sub-system and the corresponding free CU.

In the past five years, most existing processor (PE) allocation
methods were introduced for partitionable multicomputers to allocate
independent tasks, (executing in the MIMD mode) and for specific
interconnection networks such as 2-D meshes. Those PE allocation
strategies includes FRAME SLIDE [2], BUSY LIST with Scheduling
[3], ADAPTIVE SCAN [4], FREE SUB-LIST [5], 2-D BUDDY {[6],
FREE LIST [7], BIT-MAP with Partition [8], QUAD TREE [9],
QUICK ALLOCATION [11}], and BIT MAP [12]). All of them were
introduced (at the front-end computer) for the partitionable MIMD
2-D mesh-connected multicomputers. For the reconfigurable SPP
MSIMD/MIMD architecture [1}, the resource (CU/PE) allocation
strategy, called bit-map BUDDY, for hypercube networks was also
introduced. However, the bit-map BUDDY strategy was handled by
the special OS at the back-end MSIMD/MIMD parallel system.

In this paper, we present a new generalized k-Tree-based (CU/
PE) allocation model to perform dynamic resource (CU/PE)
allocation decision (at the front-end computer) for the reconfigurable
MSIMD/MIMD parallel systems, which utilize the multi-
dimensional (k-D) mesh interconnection networks. This new
generalized k-Tree-based (CU/PE) allocation model is extended from
our previous study [10]. That k-Tree-based model was introduced
for performing (PE) allocation for the partitionable MIMD k-D
mesh-connected systems. Our new model covers the resource
(CU/PE) allocation for the reconfigurable MSIMD/MIMD k-D
mesh-connected architectures, which allows independent tasks,
executing in the MIMD and SIMD modes. In addition, in order to
complete the SIMD partition, we introduce two best-fit heuristics for
the CU allocation decision: 1) the CU depth first search (CU-DFS)
strategy in O(kNg) time and 2) the CU adjacent search (CU-AS)
strategy in Ok2") time. With the CU-AS strategy, our k-Tree-based
(CU/PE) allocation model yields the same time complexity as that of
the MIMD sub-system (PE) allocation in our previous study (when
applied to 2-D and 3-D meshes). Finally, the system performance of
these two strategies was also investigated and compared (in terms of
system utilization and system fragmentation) by the simulation study.
In particular, the results of applying our model to the reconfigurable
MSIMD/MIMD 2-D and 3-D mesh-connected systems are presented.

Next section illustrates our new generalized k-Tree-based
(CU/PE) allocation model to perform the resource allocation/
deallocation decision for the reconfigurable multi-SIMD/MIMD k-D
mesh-connected architectures. Section 3 presents the evaluated
system performance of applying the new k-Tree-based (CU/PE)
allocation model for some interconnection networks such as 2-D
meshes and 3-D meshes. Finally, conclusion and future study are
discussed in Section 4.

ITC-CSCC 2002

2. k-Tree-Based (CU/PE) Allocation Model for

Reconfigurable MSIMD/MIMD k-D Meshes

Our generalized k-Tree-based (CU/PE) allocation model includes a
k-Tree system state representation (Section 2.1) and algorithms for
network partitioning (Section 2.2), sub-system combining (Section
2.3), best-fit heuristic (Section 2.4), searching for allocation/
deallocation decision (Section 2.5). This new generalized k-Tree-
based (CU/PE) allocation model is extended from our previous study
[10}, applied only for the partitionable MIMD k-D meshes, to cover
the reconfigurable multi-SIMD/MIMD k-D mesh-connected
architectures. In particular, in this paper we introduce two best-fit
heuristics for the CU allocation decision for the SIMD task (in
section 2.4.2) to complete the SIMD partition in efficient time.

2.1 k-Tree System State Representation

We use a data structure, called a k-Tree to represent system states of
the reconfigurable MSIMD/MIMD k-D mesh-connected system. In
our k-Tree-based (CU/PE) allocation model, the number of nodes in
the k-Tree are dynamic, corresponding to the number ailocated
tasks. At start, the k-Tree consists of only one (root) node, used to
store the system information (i.e., a size, a base-address, a status,
etc.) of the initialized system. During run time when many tasks are
executing, each leaf node (or a sub-system) may be free (for
incoming task(s)) or busy (for executing task(s)) and each internal
node is partially available. In order to allocate an incoming task,
each larger free node can be dynamically created and partitioned into
2* buddies/node (see Figure 1), Note: in this new k-Tree-based
model, any k-Tree node is modified to include a link to a CU for the

SIMD task (see Figure 2).
@ =
a
; j > . root 113
2] 4
BRI |
Ny X N2 k=2 Ny X NaX N3

Figure 1. The 2* buddies of the k-Trees: (a) 2-D mesh; and (b) 3-D mesh.

Figure 2 illustrates an example of the system state representation of
applying the k-Tree-based (CU/PE) allocation model for allocating
three SIMD tasks (of sizes 2x3, 2x2, and 1x5) and two MIMD tasks
(of sizes 4x4 and 3x6) on an 8x10-mesh system.

2.3 Sub-System Combining

The sub-system combining is applied during processor allocation or
deallocation. We also utilize the combinations of 2-Adjacent-
Buddies algorithm of our previous study in order to combine 2’
buddies (where j = 1, 2, ..., k-1) into the larger free sub-systems.
This algorithm is computed in O(k2%¥) time for each j and hence
O(k2") time for all js (since k2' + k22 + k2* +...+ k2" = 2k[2"-1]).
The k-Tree-based combining process is classified into four main
groups: 1) Combining all buddies, 2) Combining some adjacent
buddies, 3) Combining (adjacent) buddy(s) and corresponding
adjacent sub-buddies, and 4) Combining some adjacent sub-buddies
(see more details in [10]).

2.4 Best-Fit Heuristic

2.4.1 Best-fit Heuristic for PE Allocation

The best-fit heuristic is to find the likely best free sub-system for an
incoming task. For PE allocation decision, we also utilize the
generalized best-fit heuristic [10] for the partitionable k-D meshes.

Best-Fit Criteria: |

1. Find all free Ss that can preserve the “max free size” [O(k) time).

2, If many Ss have property (1), S that gives “min different size factor w
(diffSF)" is selected [O(K) time). i

3. If many Ss have (1)&(2), the “smallest size” S yielding “min combining
tactor (CF)" is selected [Ofk) time]. Otherwise, select by random.

4. After all nodes are visited, ;
- If the best S = request, then it is directly allocated to the request. §
- Otherwise it is partitioned and one of its buddies that yields “min

modified CF (MCF)” will be selected [O(k2') time].

Note; Criteria 1-3 are applied for every free node and combined S. But
criterion 4 is computed only once for the best free S of Steps 1-3.

{
4

s
hid
5
3

2.4.2 Best-Fit Heuristic for CU Allocation
In the reconfigurable SPP MSIMD/MIMD design [1], CPEs (control
processor elements) were added in the system and their roles (CU or
PE) are assigned at run time. Therefore, a CU for a selected sub-
system (S) can be any CPE that is directly connected to S. First, we
introduce a generalized method to identify all possible CUs and their
addressing. If the size of the selected sub-system (S) is m;x mpx...x
m, at address <(a;, as,...,a), (b;, by,...,b)>, then the number of all
possible CUs are 2 Tk, my X my X...X my.; XIX My x..x my. For
example, if k =2 and S = 7 x 8, # possible CUs is 2(1x8 + 7x1) = 30.
In general, for k dimensions of S there are 2k (outside) sub-
systems of CUs (CUSs). CUSs’ addressing are defined as follows:
for each dim i (of size = m;xmyx...x1xm;,;x...xmy), where i=1,2,....k.
Min CUS address = <(ay, a,..., a-1,...,a,), (by, by,..., a-1,..., b)>
Max CUS address = <(a,, a3...., bi+1,...,a.),(b;, by,..., bi+1,.. . b)>
For example, if k = 2 and S = 7 x 8, addressing of all 30 CUs (or 4

EGl CUSs) for a selected sub-system (S8 = mx mp = 7x 8) (at <(a;,),

O free PE
@ busy PE
@ busy CU 3,

(a) CU of task 2 (b)
Figure 2. The k-Tree-based (CU/PE) allocation for 3 SIMD tasks and 2

MIMD tasks on an 8x10 mesh system: (a) the allocated system status and
(b) the corresponding k-Tree system state representation.

{0 free node
M busy node
8 partially free node

task §

2.2 Network Partitioning

The k-Tree-based network partitioning is the partitioning process
that partitions all k dimensions of the k-D system (N = n;xnpx...xny)
into smaller 2" sub-systems and allocates an appropriate one for the
request (of size p;y X pp X ... X p, Where p;<n;,i=1,2, ...,k). In
this paper, we utilize Buddy-ID-Address-Size-Conversion algorithm
of our previous study. This network partitioning process (i.e.,
identifying #buddies = 2%, base-addresses, and sizes) is computed in
O(k2*) time (see more detail in [10]). Note: the network partitioning
will be applied and modified later (in Section 2.4.2) in order to
handle the CU partitioning for a selected sub-system.

(b1, by)>=<(5, 5), (11, 12)>) are
- For a fixed dim 1,
a min CUS (8 PEs): <(as~1, az), (a1~1, b2)> =<(4, 5), (4, 12)>
a max CUS (8 PEs): <(b1+1,22), (b1+1, b2)>= <(12,5),(12,12)>
- For a fixed dim 2,
amin CUS (7 PEs): <(ay, az-1), (by, @2-1)> =<(5, 4), (11, 4)>
a max CUS (7 PEs): <(a1, bat+1), (b1, ba+1)> =<(5,13),(11,13)>
For any free node R (of size d1 x d2 x...x dx) in the k-Tree, there are
2k inside sub-systems at boundary (BSs). BSs’ addressing are
defined as follows: for each dimension i (each of size [(d;-2)x (d,-2)
X X (di-2) x 1 x dix...x di]), wherei= 1,2, .., k.
Min BS addm<(a,+l,a2+l ,...,ai,a;.,.,...,ak), (br] ,bz-l.A..,ai,bi+|,...,bk)>
Max BS addr=<(a,+1,a2+l ,...,bi, am,...,ak),(b,-],bz-l,...,bi,bi+|,...,bk)>
For example, if k = 2 and R = 7 x 8, addressing of all 26 PEs (or 4
BSs) for a free node (R) of size d; x d; =7 x 8) (at <(a,, a3), (b1, b)>
=<(5,5), (11, 12)>) are
- For a fixed dim 1,
amin BS (8 PEs): <(ay, a@2), (a1, b2)>=<(5,5), (5, 12)>
a max BS (8 PEs): <(by, a2), (by, b2)>=<(11,5), (11,12)>
- For a fixed dim 2,
amin BS (5 PEs): <(ai+1, a2), (bsi-1, @2)>=<(6,5), (10, 5)>
a max BS (5 PEs): <(ai+1, b2), (bs-1, b2)> = <(6,12), (10,12)>

ITC-CSCC 2002

2.4.2.1 The CU Depth First Search (CU-DFS)

The CU depth first search (CU-DFS) is used to find any free node R
that is adjacent to the selected sub-system S. The searching starts
from the root and goes to the left most (leaf) node. If it is free, it
then will be checked whether it is adjacent to S. If so, its best-fit
value (Section 2.4.1) is computed. Then, new S and R will be
updated if they yield the better best-fit value. The above process is
repeated for the next free node (if there exists). Time complexity of
the CU-DFS is O(kNg). In order to identify any boundary free PEs
of a free node whether or not it is adjacent to the selected sub-system
S, we define the adjacent status in O(k), as follows:

i{ Let S, is an selected sub-system S with expanded boundary (Figure 3)
S,is afree node,i=1,2.

B 1Slis X ngx...xn 8t <(@n, 8,---, 8 B, D, -... D>, J=1,2,..., k.

i Then, S, is adjacent to S, it they are not disjoint and are different only

% one bit. “Disjoint status” can be identified (O(k)) as for 3j, j = 1.2...., k

{ 8, and S, are disjoint sither if (a,;- 8z > ng) or if (az- ay 2 Ny

For example, suppose k = 2 and a selected sub-system is § (m; x my)
and a free node is R (d, x d;). Figure 3.a illustrates the adjacent
status of S (10) and R (11), which are satisfied both not-disjoint and
one bit different. Figure 3.b shows the non-adjacent status of S (10)
and R (01) since they are not disjoint but are different in 2 bits.

0000 2o ol X3
o — =
q S T p o] s [
N (myxmg) |- i f(mixmy) | 1 myxmy) |
)8.0.9) Py) S0 l)90 @)
Selected S with 4 Possible BSs
expanded boundary (a) (b)

Figure 3. An example of adjacent statuses: (a) adjacent; (b) not adjacent .

2.4.2.2 The CU Adjacent Search (CU-AS)

The CU adjacent search (CU-AS) is another approach used to find
any free node R that is adjacent to the selected sub-system S. In this
method, the searching starts from S and its adjacent nodes can be
identified directly (see the following 4 cases). If the node R is free,
its corresponding BSs are identified and its best-fit value (Section
2.4.1) is computed. New S and R will be updated if they have the
better best-fit value. Time complexity of the CU-DFS is Ok2Y).

In order to identify any boundary free PEs of a free node (R)
whether or not it is adjacent to the selected sub-system S, we define
the adjacent buddies in O(kz) for any non-combined sub-system (S)
or O(k2") for any combined sub-system (S).

Case 1: if S is any buddy node (1, 2, ..., or 2%, we compute its BS(s)
in O(k%) time.
Let S is a selected sub-system (S = my x mzx...x my)
lis a Buddy ID of S, where I = 1, 2, ..., or 2",
Then k Adjacent Buddies can be identified by
1. Convert | to a binary strings (bx.; ... by bg)
2. Compute k adjacent Buddies: for dimj,j=1,2, ...,k
negate by (by1...0y4...b1bo),
if npy =1, min BS <(ay, az,...,8}, ..., 8J, (by, by, ..., &y, ..., B>
if Ny = 0, max BS <(a|, az, ""bl' very ag), (b|, bz. ey bl. ey bg)>

For example, if k = 2, 2 adjacent buddies of any node S (where I = 1,
2,3,0r4)are

Fomm————————

00 o |8 19

AL B Al Q‘E

2(01)

1 - Negate dim 1 (byng => 01), Compute minBS <(a1,a,), (a1,b,)>
- Negate dim 2 (n;b, => 10), Compute minBS <(a,,az), (bi.a2)>

Case 2: if S is any combined (27) buddy node (j = 1, 2, ..., k-1), we
compute its BS(s) in Ok2Y).

Let S is a selected sub-system (or a combined S of 2j=1,2, ..., k1)
Tis atemary stingof S= (s ... o)
There existjs’ * in T [i.e., k Tsare (by ... b *.."), (Bx1 ... *bokyeees
(*byz ... by*.."] and (k-))2' adjacent Buddies of each T are identified by i
- Negate a non” dim (from min to max Nos.), seteach of **..* = 0/1 & b
compute minBS (n=1) or maxBS (n=0) H
Example, forj=1& T = (bus -.. b by *), (k-1)2' adjacent nodes are
negate by (b1 ... bzny 7), setdim 1 = o/,
it n=1, compute min BS <(ay, 8, as,..., a), (b1, 82, b,.... [
If n=0,compute max BS <(ay, bz, as...., &, (b1, b2, bs,..., by)>
\ ..., negate by (M ... ba by *), setdim 1= o/, i
if n=1, compute min BS <(a, 8z, ..., &), (01, ba, by,.... &> &
if n=0,compute max BS <(ai, az, 83,-.., bx), (b1, bz, ba,..., bu)>
forj= k-1 &T = (byt *...**), 2" adjacent nodes are
negate by (x4 *...**), set dim 1, 2,...,.k-1= O0/1(min->max).

For example, if k = 2, adjacent buddies of any combined S are

110 002 s ogl_ 10
s : : s 0 parssn prasTe
o |: H LM PP P S

gl' 91; ol 11 1

Case 3: if S is any combined (2%%) buddy(s)&(2') sub-buddies node
(j=1,2....,k-1), all adjacent buddies can be identified by applying
Case | and Case 2 in O(k2%). For example, if k=2, adjacent buddies
of any combined S are

2 HE RN o0 519 0 [H%
&o00f ™ =T «j&t10 a
=11 s i1 of-* ot Ist)
oy &O01Q : [T &N
seopJ3 1 ke [ise) 00 | 10
& 00! ;0 --Pg.xng - &10 = l-l:..
waoeednt SO+ aprannx S(*1)
o] N so1 | o1 | n ot | & 11

Case 4: if S is any combined (k2°") sub-buddies node (j=1,2.....k-1),
all adjacent buddies can be identified by applying Case 1 and 2 in
O(k2%). For example, if k=2, adjacent buddies of any combined S are

™. BRD) % £
! l-.1 2o 0; ?‘. & Fil 00 | 10
il i N MK e Baca .';;
11 T of [11 ; 3
01] ~ 9 1 - - 3 B

2.5 Searching for Allocation/Deallocation

In the k-Tree-based (CU/PE) allocation procedure, searching starts
from the root and perform DFS (depth first search) by visiting the left
most (leaf) node. If that node is free and its size can accommodate
the request, its best-fit value is computed. For an SIMD 1ask, either
the CU-DFS or CU-AS strategy is applied. Then, the best
(SIMD/MIMD) sub-system (S) is updated if the new free S yields the
better best-fit value. The above process is repeated for the next node
in the k-Tree including all external (leaf) nodes and internal nodes.
After all nodes are visited, the final process is applied to either 1)
allocate the best sub-system directly to the request (if its size is equal
to that of the request) or 2) partition the corresponding node for the
request (if its size is larger than that of the request).

Whenever a task is finished, the k-Tree-based (CU/PE)
deallocation procedure is applied by searching for the location of the
finished sub-system starts from the root and goes to the subset path
until reaching the leaf node that stores information of the finished
task. After finding that k-Tree’s node of the finished task, its status
is updated. Finally, the combining process is recursively applied (to
remove free internal nodes(s)) from both PE and CU patrtitions to the
root (if it is possible).

THEOREM 1: Time complexity of the k-Tree-based (CU/PE)
allocation with applying the CU-AS strategy (to find the best free
sub-system for each incoming task) on a k-D mesh is
OK*2%*(N,+Np). Ny is the max allocated tasks (NASN), Ng is the
corresponding free nodes in k-Tree (No+NgSN and Ng<(25-1)N,).
PROOF: Since #external (or leaf) nodes are at most No+ Ng< N
and #internal nodes are at most (#leaf nodes-1) divided by 21N,

ITC-CSCC 2002

therefore all nodes (M) = (NA+Np) + (Na+Ng-1) / (2¥-1) < 2N. [For
each (free) leaf node, the best-fit value is computed in 0% and
O(KNp) for all free nodes. For each internal node, the best-fit value
is computed in O(k’2™) for all combined sub-systems and
O(K*2%(N ,+Np)) for all internal nodes.] Finally, after all nodes are
visited, if the best S’s size is equal to the request, then it is directly
allocated to the request. Otherwise, the network partitioning and the
best sub-partition will be applied in Ok>*2%). Thus, total time
complexity of the k-Tree-based (CU/PE) allocation with applying
the CU-AS heuristic is O(k’2"(Na+Np)), where Na+Ng < N and
hence O(N,+Ng) when applied to the 2-D/3-D meshes.

Note: time complexity of the k-Tree-based (CU/PE) allocation
with applying the CU-DFS heuristic is O(k*2(No+Np) (kNg)) and
hence O(Ng(N,+Ng)) when applied to the 2-D/3-D meshes.

THEOREM 2: Time complexity of the k-Tree-based (CU/PE)
deallocation (to free the particular k-Tree node that stores the
finished task and to combine the free internal nodes to the root of the
k-Tree) on a k-D mesh is 0O(n2%), where n=max(n,ng,...,n;).
PROOF: Searching for the location of a finished sub-system
from the root is at most n(2*) steps. Then, combining all 2* buddy
nodes from the finished sub-system to the root (if it is possible) takes
another n(2*) steps. Therefore, total time complexity is om2* < M).

3. System Performance Evaluation

By simulation study, a number of experiments were performed to
investigate the system performance effect (i.e., system utilization
and fragmentation) of applying our k-tree-based (CU/PE) allocation
model for the reconfigurable MSIMD/MIMD 2-D and 3-D meshes.
For each experiment, (simulation) time units were iterated around
5,000-50,000 units and incoming tasks were generated around
1,000-10,000 tasks, according to the system parameter(s) setting.
For each evaluated result, different data sets were generated and the
algorithm was repeated until an average system performance does
not change. The Uniform distribution U(a., B) was considered for
the task-size distribution. Task arrival rate ~ Poisson(X) (or inter-
arrival time ~ Exp(1/A=5)), and service time ~ Exp(u=10). Note: in
order to set the same incoming tasks and environment to both CU
allocation strategies for the comparison purpose, we assumed that no
task finishes during the considering time.

In Experiment 1, we investigated the effect of system sizes to
the system utilization (Ugys), where the system sizes (N=n,xn;) were
varied and the task sizes (1x1 = "'/, x "%/,) were generated and fixed.
For all test cases the CU-AS and CU-DFS strategies performed the
same system utilization (since these methods were different only
when sub-system (S) and task (T) sizes were equal which hardly
occurred.). Table 1 showed the results (%Usy;) of applying the k-
Tree-based (CU/PE) allocation for 2-D and 3-D meshes, which
yielded the same results when increasing percentage of SIMD tasks.

Table 1. Effect of the system sizes to the system utilization (%).

2-D Mesh 3-D Mesh
N=n,xn, 0%, 10% 20% N 0% 10% 20%
64x64 68.76 | 68.46 | 71.91 n=32 58.14 | 58.55 | 58.60
128x128 | 68.25 | 67.82 | 67.82 =64 49.73 | 54.32 | 54.33
256x256 | 70.16 | 70.16 | 70.16 | n=128 | 50.52 | 60.52 | 50.52
Tabie 2. Effact of the task sizes to the system utilization (%).
Task size 0% 10% 20% 50%
1x1-64x64 81.403 78.585 78.265 78.200
1x1-128x128 70.158 70.160 70.162 69.007
1x1-256x256 59.995 59.995 59.995 59.997

In Experiment 2, we investigated the effect of task sizes to the
system utilization, where the system size was fixed (N = 256x256)
and the task sizes were varied. Table 2 showed that the system
utilization increased when the maximum task-size parameter was
reduced since a number of small tasks could be allocated. For the
system utilization, these strategies performed the same results since
Usys= 1 - Fyy, (or no effect of internal system fragmentation).

4. Conclusion and Future Study

This paper introduces two best-fit heuristics for the k-Tree-based CU
allocation: 1) the CU-DFS strategy in O(kNg) and 2) the CU-AS
strategy in O(k2"). The CU allocation is added to complete the design
of the new generalized k-tree-based (CU/PE) allocation model for the
reconfigurable MSIMD/MIMD k-D mesh-connected architectures.
By simulation study, a number of experiments were performed to
investigate system performance of applying our new k-Tree-based
(CU/PE) allocation model for reconfigurable 2-D and 3-D meshes.
System performance results (i.e., system utilization & fragmentation)
of applying our model with including the CU-AS strategy showed the
same results to those of the CU-DFS strategy. However, for the 2-D
or 3-D meshes the CU-AS strategy yields O(1) time which is better
than O(Ng) time performed by the CU-DFS strategy.

In the future study, we will modify and add the CU searching to
some existing 2-D mesh-based PE allocation methods. Those
modified strategies can support SIMD tasks for the reconfigurable
MSIMD/MIMD 2-D meshes. Therefore, the system performance of
those (CU/PE) allocation methods will be investigated and compared
to our k-Tree-based (CU/PE) allocation approach.

References

{11 M. S. Baig, T. El-Ghazawi, and N. A. Alexandridis, “Single
Processor-Pool MSIMD/MIMD Architecture,” in proceeding of
Fourth IEEE Symposium on Parallel and Distributed
Processing, pp. 460-467, Texas, December 1992.

[2] P.J. Chuang and N. F. Tzeng, “Allocating Precise Submesh in
Mesh Connected Systems,” IEEE Transaction on Parallel and
Distributed Systems, v.5(2), pp. 211-217, 1994.

(3] D. Das Sharma and D. K. Pradhan, “Job Scheduling in Mesh
Multicomputers,” [EEE Transactions on Parallel and
Distributed Systems, v.9(1), pp. 57-70, 1998.

[4]). Ding and L.N. Bhuyan, “An Adaptive Submesh Allocation
Strategy for Two-Dimensional Mesh Connected Systems”, in
Proceeding of International Conference on Parallel Processing,
vol. 11, pp.193-200, 1993.

{5] G. Kim and H. Yoon, “On Submesh Allocation for Mesh
Multicomputers: A Best-Fit Allocation and a Virtual Submesh
Allocation for Faulty Meshes,” IEEE Transactions on Parallel
and Distributed Systems, v.9(2), pp. 175-185, 1998.

[61 K.Liand K.H. Cheng, “Job Scheduling in a Partitionable Mesh
Using a Two-Dimensional Buddy System Partitioning Scheme,”
IEEE Transactions on Parallel and Distributed Systems, v.2(4),
pp. 413-422, 1991.

[7]1 T. Liu and et. al., “A Submesh Allocation Scheme for Mesh-
Connected Multiprocessor Systems,” in Proceeding of
International Conference on Parallel Processing, pp. 159-163,
vol. II, 1995.

[8] P.Mohapatra, “Processor Allocation Using Partitioning in Mesh
Connected Parallel Computers,” Journal of Parallel and
Distributed Computing, pp. 181-190, v. 39, 1996.

[9] J. Srisawat and N.A. Alexandridis, “A New Quad-Tree-Based
Sub-System Allocation Technique for Mesh-Connected Parallel
Machines,” in Proceeding of the 13" ACM-SIGARCH
International Conference or Supercomputing, pp. 60-67,
Rhodes, Greece, June 1999.

[10] J. Srisawat and N.A. Alexandridis, “A Generalized k-Tree-
Based Model to Sub-System Allocation for Partitionable Multi-
Dimensional Mesh-Connected Architectures,” in Proceeding of
the 3™ International Symposium on High Performance
Computing, pp. 205-217, Springer publisher, Tokyo, Japan,
October 2000.

[11]1S. Yoo and et. al., “An Efficient Task Allocation Scheme for 2D
Mesh Architectures,” [EEE Transactions on Parallel and
Distributed systems, v. 8(9), pp. 934-942, 1997.

[12] Y. Zhu, “Efficient Processor Allocation Strategies for Mesh-
Connected Parallel Computers,” Journal of Parallel and
Distributed Computing, v.16, pp. 328-337, 1992.

ITC-CSCC 2002

