Lock Management in a Main-Memory DBMS

Sang-Wook Kim
Division of Computer, Information, and Communications Engineering
Kangwon National University
192-1 Hyoja 2 Dong, Chunchon, Kangwon, Korea
Tel: +82-33-250-6392, Fax: +82-33-252-6390
email: wook@kangwon.ac kr

Abstract: The locking is the most widely-used
concurrency control mechanism for guaranteeing logical
consistency of a database where a number of
transactions perform concurrently. In this paper, we
proposc a new method for lock management
appropriate in main-memory databases. Our method
chooses the partition, a fixed-sized container for
records, as a unit of locking, and directly keeps lock
information within the partition itself. These make our
method enjoy the following advantages: (1) it has
freedom in controlling of the trade-off between the
system concurrency and the lock processing overhead
by considering the characteristics of given target
applications, (2) it enhances the overall system
performance by eliminating the hashing overhead, a
serious problem occurred in the traditional method.

1. Introduction

Recently, as the capability of computing devices
gets dramatically higher, the coverage of real-time
applications is becoming much wider. A typical wav
to manage the databases effectivelv in such real-time
applications is to replace disk with main-memory for
storagel1}. The main-memory DBMS(MMDBMS),
which employs main-memory for primary storage,
resolves the radical problem of the delaved processing
time due to disk accesses occurred in the disk-resident
DBMS|2][3]{4].

Real-Time DBMS Team at Electronics and
Telecommunications Research Institute(ETRI) and Data
& Knowledge Engincering Lab. at Kangwon National
University have been working together to develop the
Tachvon, a high-performance MMDBMS. The
Tachvon supports the deadline concept since it
considers real-time applications as its major target[5].
Also, it hires the obiect-oriented data model to
accomodate diverse applications easily.

This paper discusses concurrency control in the
Tachyon. The concurrency control manager is a
sub-component of a DBMS that controls the execution
order of concurrent transactions in order to prevent
them from destroving the consistency of a databasel6].
Concurrency control methods currentlv-proposed are
classified into the two-phase locking(2PL)
protocol[71[8], the time-stamp ordering schemef9}, the
optimistic method{10]. and the multiple version
methodf11]. The 2PL vprotocol is to control the
concurrency by making a transaction acquire the lock

before accessing the corresponding data item. Most of
commerciall DBMSs employ it due to its
practicality[12][13].

Basically. our concurrencv control manager emplovs
the 2PL protocol, and maintains its locks with the
following two features. First, it employs the partition,
an allocation unit of main-memory, as a locking
granule, and thus effectively adijusts the trade-off
between the system concurrency and the lock
processing cost through the analvsis of applications.
Second. it reduces the lock processing cost
significantly by maintaining the lock information
directly in the partition itself without hashing.

This paper is organized as follows. As related
work, Section 2 briefly describes the method for
managing the lock information in the disk-resident
DBMSs, then points out the problems of applving it to
MMDBMS:s. Section 3 vpresents the locking
granularity chosen in the Tachyon, and justifies the
reason for this choice. Section 4 presents our
approach to manage the lock information in the
Tachvon, and discusses its advantages. Section 5
details the main data structures mnecessary for
implementing our approach. Finally, Section 6
summarizes and concludes the paper.

2. Related work: lock management in
disk-resident DBMSs

Most of disk-resident DBMSs emplovy the hash
structure for managing the lock informationfi4].
Figure 1 shows the basic structure for lock
management using hashing. We can find the
corresponding entry in the hash table by applving the
hashing function to the data item to be locked. Each
hash entry points to the list of lock headers, and
subsequently each lock header points to the list of
lock requests. The list of lock headers called the
hash chain implies the occurrence of the hash
conflicts. The list of lock requests means that
multiple transactions try to acquire a lock on the same
data item.

The lock header blocks and the lock request blocks
are dvnamically maintained in two separate DOOIs.
They are allocated/deallocated from/to the pools. Also.
each transaction points to a list of its own lock
request blocks corresponding to the locks requested by
that transaction.

ITC-CSCC 2002

The most important thing in this hash-based
management is that it maintains onlv the information
of such locks that are acquired or requested by active
transactions. Thus, this method minimizes the usage
of the storage space in main-memory. However, the
following problems occur when we apply this method
directly to the MMDBMS.

Hashing(DatalD)

Hash Table Hash Entry
,]
Transaction Lock Heade
Table < p
Queue of Lock Requests

Trans_Enany |, Pool of

\ Free
\\ Header

M Transaction Lock List Blocks

X,
N,
\
-
Pool of
¢ [P | Free

Requests
Blocks

Figure 1. Lock management based on hashing in
disk-resident DBMSs.

The first one is the overhead caused by using the
hash structure. The hashing incurs a high cost
because it has to perform the hashing function and to
manage the hash chains. This cost is negligible in
disk-resident DBMSs since the cost for disk accesses
is dominant in all database operations. However, this
is not the case in MMDBMS environment since there
are no disk accesses. Therefore, the cost of hashing
could get larger than that of scarching and updating
data items in MMDBMSs.

The second ome is the overhead for mutual
exclusion of hash chains. The hash chain is a shared
data structure read/written concurrently by multiple
transactions in a DBMS. Thus, we need a mechanism
that guarantees the physical consistency of the hash
chains. While the cost for this mutual exclusion is
negligible in disk-resident DBMSs, this is also not the
case in MMDBMSs.

The third one is the overhead for maintaining the
lock header blocks. As mentioned carlier, they are
maintained dynamically within its pool in hash-based
lock management. Thus, a lock header block is
allocated/deallocated from/into the pool whenever a
new block is requested or an allocated block is
retummed. In addition. mutual exclusion of the pool
has to be guaranteed since the pool is a shared data.
These two overheads cause the performance of the
MMDBMSs to deteriorate.

3. Our choice of lock granularity

The lock granularity determines the size of the
individual data item for locking. The lock granularity
determines the lock processing cost and also the
system concurrency[8]. Typical locking granules are
the database, segment, page. and record. As the Jock
granularity becomes larger, the lock processing cost

gets smaller while the system concurrency gets lower.
On the contrary, as the lock granularity becomes
smaller, the system concurrencv gets higher while the
lock processing cost gets larger|3].

In disk-resident DBMSs. the obtaining and releasing
of locks incur onlv main-memory accesses. Their
costs are quite small compared with those of whole
searching and updating of data items that incur disk
accesses. Thus, the disk-resident DBMSs mainly focus
on maximizing the system concurrency rather than the
lock processing cost. As a result, commercial DBMSs
employ the record as the locking granule.

On the contrary, since the searching and updating
of data items perform within main-memory in
MMDBMSs. thus their entire cost is so small. Thus,
the costs for obtaining and releasing of locks become
fairlv important. Also. the duration of holding locks
tends to be short in MMDBMSs since transactions
perform very fast, and therefore. lock conflicts among
transactions are rare. Thus, the performance gains
coming from the small locking granule diminish in
MMDBMSs[3].

This fact causes the MMDBMSs to hire smaller
lock granules. Reference [2] allocates just one lock
for the entire database. This strategy contributes to
minimize the lock processing cost. Furthermore. it
completely eliminates additional overhead for handling
deadlock detection and resolution since the deadlock
does not occur in this situation with only one lock.
However, the transactions that read and write the
database are not able to run simultaneously, and thus
the system concurrency degrades too much.

In this research, we observed that the lock granules
of extremely large or small sizes such as the database
and the record are not appropriate for the MMDBMS.
Thus, we considered the segment and the partition
whose sizes are in the range of the two extremes as
the candidates for the lock granule in the Tachvon.
The segment is a logical unit for storing the records
having the same schema, and corresponds to the
relation in relational databases. The segment consists
of a number of partitions. The partition is the
physical allocation unit of main-memory with a fixed
size, and stores multiple records.

The MMDBMS Starburst[4] employs the segment as
a lock granule. However. in case multiple transactions
simultaneously access the records in a scgment, the
system concurrency deteriorates seriously as in case of
the granule of the database. Also, it is not easy to
predict the degree of the system concurrency since the
size of a segment varies as the number of records
changes. Currently, the Starburst dvmamically changes
its lock granule into the record or the segment
according to the features of applications. However,
this strategy requires an additional overhead for
checking the status, and thus causes thc performance
of MMDBMS to degrade.

Through these considerations, we select the partition
as the lock granularity for avoiding two extremes of
the low system concurrency and the high lock

ITC-CSCC 2002

processing cost. Also. we can easily adijust the size
of the partition when installing the DBMS. If users
require the high system concurrency, we make the
partition smaller. On the other hand, if users do not
want to pav the high lock processing cost, we make
the partition larser. Therefore, we can effectively
adijust the trade-off between the system concurrency
and the lock processing cost through the analysis of
target applications.

4. Our approach: lock management in the
Tachyon

In the Tachvon, we keep the lock information
directly within the data item unlike the hash-based
method in disk-resident DBMSs. Since we hire the
partition as the locking gramule in the Tachvon. the
lock header containing the lock information resides in
each partition. Figure 2 shows a basic data structure
for managing lock information. We see that there are
no hash table and pool for lock header blocks since
the lock header block exists within its corresponding
partition. As a result, the proposed method clearly
resolves the three overheads caused by the hash-based
method.

Lock Header

Partition Queue of Lock Requests
Table qoes

Transaction Pool of
Requests

Blocks
Partition
Trans_Entry
.
. Transaction Lock List
.

4

;
I

Partition

Figure 2. Lock management in the proposed method.

While the hash-based method dynamically maintains
lock header blocks that correspond to the locks
acquired or requested, the proposed method maintains
them statically within every partition. Thus,
main-memory space for the lock header block wastes
in each partition when the partition is not locked.
However, this space is not that serious in case of
using the partition as a locking granule. In the
current implementation, the lock header occupies 28
Bytes and the partiion 8 KBytes. Therefore, the
proposed method requires only 0.33% additional space
for this static maintenance. This small space overhead
is sufficientlv compensated by the rapid response time
of the MMDBMSs.

The question naturally arising at this point is the
effect of applving the proposed method to disk-resident
DBMSs. For example, we can include a lock header
in each record in the same way. However, the lock
header blocks reside on disk in disk-resident DBMSs
as the records do. Thus, disk accesses occur for lock
processing whenever a transaction issues a lock
request. If the lock is immediately acquired, the

transaction obtains that record directlv from the buffer
rather than disk. If the transaction has to wait for
other transactions to finish due to the lock conflict,
however, the page containing the record is likely to be
swapped out in the meantime. This makes the system
performance deteriorate seriously. In contrast, this
problem does mnot occur in MMDBMSs, since the
whole database is resident on main-memory.

5. Data structures for lock management

This section details the main data structures shown
in Figure 2 necessary for implementing the proposed
method. The Tachvon manages all the data structures
in the shared memory of the Unix[15].

LockHeader corresponds to the lock header in each
partition and represents whether the partition is locked.
LockHeader consists of four sub-elements of Latch,
RequestQueue, GrantedMode, and Waiting. Latch is
used as a means for lafching{16] that guarantees the
physical consistency of LockHeader. ReguestQueue is
a pointer to the list of LockRequests described below.
GrantedMode represents the lock mode held on the
partition, and has one of two values of the shared or
exclusive modef14]. The shared mode allows multiple
transactions to read the comesponding partition
concurrentlv. but does not allow anv writings. The
exclusive mode allows only one transaction to write
the corresponding partition. Also, Waiting indicates
whether other transactions are waiting for the lock in
this partition to be released.

LockRequest corresponds to the lock request block
and manages the information of the locks obtained or
requested by transactions. LockRequest is allocated
from its pool responding to the lock request and is
returned into the pool at the time of lock releasing.
The newly allocated LockRequest is added to the list
pointed by RequestQueue of LockHeader.

LockRequest is composed of the seven sub-clements

of RequestQueueNext, RequestQueuePrev, Status,
GrantedMode, TransEntry, Next, and Prev.
RequestQueueNext and RequestQueuePrev are the

pointers for keeping the lock request blocks as a
doublv-linked list. Status represents the status of the
transaction requesting the lock, and has one of three
values of granted, waiting, and converting. The value
of converting appears when a transaction has acquired
a shared lock on a partition together with other
transactions, and then requests an additional exclusive
lock on the same partition. This case has to be
handled in a special way, and thus rcpresented as a
different status.

GrantedMode represents the lock mode, and has one
of two modes: shared or exclusive one[l4].
TransEntry points to the entry in the transaction table
that has all the information of the transaction issuing
the lock request. Finally, Next and Prev are used to
construct the transaction lock list as shown in Figure
2. This list is useful for releasing all the locks
requested by the transaction when it ends.

TransEntryTable corresponds to the transaction table

ITC-CSCC 2002

that stores all the information about the currently
running transactions. TransEntryTable allocates an
empty entry when a new transaction starts to run. and
returns it when the transaction ends. TransEntryTable
consists of manv sub-clements, but here we present
some of them related to concurrency control such as
LockRequestList, LatchWaitingList, LockWaitForlList,
SemID, and LatchMode. LockRequestList points to the
list of the lock request blocks requested by the
transaction that corresponds to this entry.
LatchWaitingList is a pointer to the list of the entries.
each of which comresponds to the transaction waiting
for the same latch.

We use the Unix semaphore[15] to wake up the
transactions in the sleep state into the readvy state or to
make the running tramsactions be in the sleep state.
The SemID is an semaphore identifier allocated to each
transaction for this pumose. Finally, LatchMode
represents the mode of the latch which the transaction
likes to acquire, and has a value of shared or
exclusive ones.

6. Conclusions

In this paper, we have discussed lock management
in the Tachvon, an MMDBMS. The cost of lock
management occupies a large portion of the cost of
searching or updating a data item in MMDBMSs since
there are no costly disk accesses. Thus, efficient
management of locks is fairly important to enhance the
performance of the entirr MMDBMS.

The lock management in the Tachyon has the
characteristics as follows: First, it employs the
partition, an allocation unit of main-memory. as a
locking granule, and thus effectively adiusts the
trade-off between the svstem concurrency and the lock
processing cost through the analysis of applications.
Second, it reduces the lock processing cost
significantly by maintaining the lock information
directly in the partition itself without hashing.

The Tachvon has been served as a
high-performance storage engine for a variety of
real-time applications especially in telecommunications
domain. Currently, we are performing extensive
experiments in real domains in order to show the
eifectiveness of our approaches adopted in our
concurrency control manager compared with the
previous ones.

Acknowledgment

This research was supported by the 2000-2001
Research Project(Grant KRF-2000-041-E00258) of
Korea Research Foundation(KRF). Sang-Wook Kim
would like to thank Jung-Hee Seo. Suk-Yeon Hwang,
Grace(Joo-Young) Kim, and Joo-Sung Kim for their
encouragement and support.

References

[11 S. H. Son(Editor), Special Issue on Real-Time
Database Systems, ACM SIGMOD Record, Vol.

17, No. 1, Mar. 1988.

H. Garchia-Molina and K. Salem, "High
Performance Transaction Processing with Memory
Resident Data" In Proc. Intl. Workshop on High
Performance Transaction Systems, Dec. 1987.

H. Garcia-Molina and K. Salem. "Main-Memory
Database Systems: An Overview." IEEE Trans. on
Knowledge and Data Engineering, Vol. 4, No. 6,
1992.

T. J. Lehman et al., "An Evaluation of Starburst's
Memorv Resident Storage Component," I[EFEE
Trans. on Knowledge and Data Engineering, Vol.
4, No. 6, Dec. 1992.

J. H. Kim, §. W. Kim, D. Y. Kim, W. Choi.
"Implementing a Real-Time Scheduling Daemon in
General Purpose Operating System Unix." In Proc.
IEEE Intl. Real-Time Computing Systems and
Applications (IEEE RTCSA 2000), 2000,

P. Bemnstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.

K. P. Eswaran et al., "The Notion of Consistency
and Predicate Locks in a Databasg System."
Comm. of the ACM, Vol. 19, No. 11, Nov. 1976.

J. Gray, R. Lorie, and G. Putzolu. "Granularity of
Locks in a Shared Data Base." In Proc. Inil.
Conf. on Very Large Data Bases, Sept. 1975.

P. Bemstein and N. Goodman, "Timestamp-Based
Algorithms for Concurrencv Control in Distributed
Systems." In Proc. Intl. Conf. on Very Large Data
Bases, VLDB, 1980.

[I0JH. Kung and J. Robinson. "On Optimistic
Methods for Concurrency Control," 4ACM Trans. on
Database Systems, Vol. 6, No. 2, 1981.

{11]C. Papadimitriou and P. Kanellakis, "On
Concurrency Control by Multiple Versions," ACM
Trans. on Database Systems, Vol. 9, No. 1, 1984

{12]M. Carev and M. Stonebraker. "The Performance
of Concurrency Control Algorithms for Database
Management Systems," In Proc. Intl. Conf. on
Very Large Data Bases, VLDB, 1984.

[13]1R. Agrawal, M. Carev, and M. Livny, "Models for
Studving Concurrency Control ~ Performance:
Alternatives and Implications." In Proc. Intl. Conf.
on Management of Data, ACM SIGMOD, May
1985.

[14]1]). Gray and A. Reuter, Transaction Processing:
Concepts and Techniques, Morgan Kaufman
Publishers, 1993.

[15]M. J. Bach, The Design of the Unix Operating
System, Prentice-Hall, 1980.

[16] C. Mohan et al.. "ARIES: A Transaction Recoverv
Method Supporting Fine-Granularity Locking and
Partial Rollbacks Using Write-Ahead Logging”
ACM Trans. on Database Systems, Vol. 17, No. 1,
Mar. 1992.

2]

B3]

[4]

]

(6]

71

(8]

9

ITC-CSCC 2002

