A Storage Structure of Geometric Data with Detail Levels

Joon-Hee Kwon' and Yong-Ik Yoon®
! Department of Computer Science
Sookmyung Women’s University,
53-12 Chungpa-dong 2-ga, Yongsan-Gu, Seoul, Korea
Tel. +82-02-710-9431, Fax.: +82-02-710-9296
? Department of Computer Science
Sookmyung Women’s University,
53-12 Chungpa-dong 2-ga, Yongsan-Gu, Seoul, Korea
e-mail : kwonjh24@hotmail.com, yiyoon@sookmyung.ac.kr

Abstract: This paper proposes a new dynamic storage
structure and methods for geometric data with detail levels.
Using geometric data with detail levels, we can search
geometric data quickly. However, the previous structures
for detail levels form the bottleneck in the design of
database and do not support all types of geometric data with
detail levels. Our structure supports all types of geometric
data with detail levels. Moreover, our structure does not
form bottleneck in the design of database. This paper
presents the structure and algorithms for searching and
updating of geometric data with detail levels. Experiments
are then performed.

1. Introduction

An important requirement in GIS (Geographic Information
Systems) is the ability to display numerous geometric data
swiftly onto the display window[1]. Geometric data with
detail levels enables the swift display of large geometric
data. In order to display geometric data swiftly, a storage
structure for geometric data, especially a spatial indexing
structure is needed.

It turns out that the integrated storage of geometric data
with detail levels in the previous spatial indexing structure
forms the bottleneck[2]. The approach might be to define
a discrete number of levels of detail and store them
separately each with its own spatial indexing structure.
Though fast enough for interactive applications, it
introduces redundancy because some objec¢ts have to be
stored at several levels[3].

A few spatial indexing structures, that provide some
limited facilities for geometric data with detail levels, are
known : the Reactive-tree[3, 4], the PR-file[5] and the
Multi-scale Hilbert R-tree[1]. However, the structures do
not support all types of geometric data with detail levels.

This paper introduces a new storage structure of
geometric data with detail levels. In the proposed method,
geometric data with a number of levels of detail is
integrated into a single storage structure. The integrated
structure enables an integrated access of geometric data
with detail levels. Moreover, our structure does not
introduce redundancy as compared with the previous
approaches.

The remainder of this paper is organized as follows.
Chapter 2 surveys related works. Chapter 3 describes the
overview and the structure. Chapter 4 and Chapter 5
present the algorithms and experiments of the proposed
structure. Finally, Conclusions are made.

2. Related Work

2.1 Storage Structure of Geometric Data

In order to handle geometric data efficiently, database
system needs an indexing structure that will help it retrieve
data items quickly according to their geometric
locations. Numerous spatial indexing methods for
geometric data are known. Spatial indexing methods are
classified in hierarchical methods and hashing based
methods[6]. The R-tree[7, 8§, 9, 10] and the Quad-tree[11,
12] are based on hierarchical methods. The Grid-file[13]
and the R-file[14] are based on hashing based methods.

Among index structures known, the R-tree is the most
popular. The R-tree is based on the smallest aligned n-
dimensional rectangle enclosing an object. The R-tree is a
direct extension of B-trees in k-dimensions. The structure
is a height-balanced tree that consists of intermediate and
leaf nodes. Data objects are stored in leaf nodes and
intermediate nodes are built by grouping rectangles at the
lower level.

Let M be the maximum number of entries that will fit in
one node and let m <M/2 be a parameter specifying the
minimum number of entries in a node. The R-tree satisfies
the following properties.

1. Every leaf node contains between m and M index

records unless it is the root.

2. For each index record (I, tuple-identifier) in a leaf
node, I is the smallest rectangle that spatially
contains the n-dimensional data object represented
by the indicated tuple.

3. Every non-leaf node has between m and M
children unless it is the root.

4. For each entry (I, child-pointer) in a non-leaf node,
I is the smallest rectangle that spatially contains
the rectangles in the child node.

5. The root node has at least two children unless it is
a leaf.

6. All leaves appear on the same level.

2.2 Geometric Data with Detail Levels

The concept of geometric data with detail levels is related
to one of the main topics in cartographic research, map
generalization, that is, to derive small scale maps(large
regions) from large scale maps(small regions){3]. A
number of generalization techniques for geometric data
have been developed[15]. The generalization techniques

ITC-CSCC 2002

are a simplification, a combination, a symbolization, a
selection, a exaggeration, and a displacement.

However, research on an generalization is going on and
it is a non-trivial problem. Therefore, research on a
generalization is focused on relatively simple techniques.

2.3 Storage Structure of Geometric Data with
Detail Levels

A few storage structures of gemetric data that provide some
limited facilities for geometric data with detail levels, that
is the Reactive-tree{3, 4], the PR-file[5] and the Multi-scale
Hilbert R-tree[1] are known. However, the methods have
deficiencies that they support only a selection operation and
a simplification operation.

The Reactive-tree : The Reactive-tree assigns an
importance value to each spatial data, and each object is
stored in a level according to its importance values. An
importance value represents the smallest scale map in
which the spatial data is still present. Less important
objects get lower values while the more important objects
get higher values. It is based on the R-tree. In the
Reactive-tree, important objects are stored in the higher
levels of the tree. The drawback of the Reactive-tree is that
it supports only a selection operation of all generalization
operations.

The PR-file : The PR-file(Priority Rectangle File) was
designed to efficiently store and retrieve spatial data with
associated priority number. Each priority number
corresponds to a scale in the map. It is based on the R-file.
Unlike the Reactive-tree, an object in a PR-file is not stored
as an atomic unit. The PR-file makes use of a line
simplification algorithm, which will select some of the line
segment endpoints from a polyline according to the desired
scale. The drawback of the PR-file is that it supports only a
simplification operation of all generalization operations and
performs poorly with data distribution that is non-uniform:.

The Multi-scale Hilbert R-tree : The Multi-scale
Hilbert R-tree is similar to the PR-file. The main difference
is that geometric objects in a Multi-scale Hilbert R-tree are
decomposed and stored as one or more sub-objects in the
main data file. It is based on the R-tree, especially in the
Hilbert R-tree. For a simplification operation, the storage
structure makes use of a line simplification algorithm, that
is a modified version of the Douglas-Peuker algorithm{16].
For a selection operation, the storage structure selects
objects based on the size. The drawback of the Multi-scale
Hilbert R-tree is that it supports only a selection operation
and a simplification operation of all generalization
operations.

3. Storage Structure of Geometric Data
with Detail Levels

3.1 Overview

To represent geometric data with detail levels after all
generalization, we can use only the storage structure of
geometric data, except for the Reactive-tree, the PR-file,
and the Multi-scale Hilbert R-tree. In this paper, we
selected the R-tree, because of popularity.

In the approach of the R-tree for geometric data with
detail levels, geometric data with detail levels is stored
independently, each with its own storage structure. It
introduces redundancy because the data in coarse levels has
to be stored at detailed levels redundantly.

In our approach, multiple R-trees for each detail levels
are integrated into the single structure. Moreover, our
approach does not introduce redundancy because an object
is stored in the only once and all levels of the object are
represented by a composite level value. Figure 1 shows the
overall structure. Notice that multiple R-trees are integrated
by detail level node.

! Single Index Structure

! level vaue i l I ldetail level node

] A
Multiple Index
Structures
y h 3 ;
[data] data | i

"Figure 1. Overall Storage Structure

3.2 Structure

Our storage structure has detail level nodes and the R-trees
with the composite level value. A detail level node is the
node that has a level value and points the R-tree
corresponding to each level value. The R-tree with the
composite level value is the tree that adds a composite level
value in the R-tree node.

A detail level node has the form (entries, pg), where py
is the pointer pointing to the next detail level node. The
entries have the form (d, p,), where d is the detail level
value and p, is the pointer pointing to a root node of the R-
tree.

A non-leaf node of the R-tree has entries of the form (p,
MBR, c), where p is the pointer pointing to child nodes in
the R-tree node, MBR is the minimal bounding rectangle
that covers all rectangles in the lower node’s entries, and ¢
is the result of bitwise-OR calculation of all composite level
values that is used in the lower node’s entries. A leaf-node
of the R-tree has entries of the form (id, MBR, c), where id
is the pointer pointing to an object, MBR is the minimal
bounding rectangle that covers an object, and ¢ is the
composite level value, that is the result of the bitwise-OR
calculation of all level values that the object appears.

3.3 Properties
Our index is based on the R-tree. Therefore, most of the
properties are similar to the properties of the R-tree.
However, the following properties are different with the R-
tree. Let M, be the maximum number of entries that will fit
in the detail level node.

1. Every node in the detail level nodes contains

between 1 and M, index records.

ITC-CSCC 2002

2. An object is appeared in a tree rooted by a node
pointed by entry with the smallest level value that
the object is appeared.

3. Bach entry of a detail level node is sorted from
small level value to large level value.

4. The composite level value of each entry of the R-
trees is the result of bitwise-OR calculation of all
composite level value that is used in the lower
node’s entries.

4. Searching and Updating of Geometric Data
with Detail Levels

4.1 Searching

The searching algorithm is similar to the searching
algorithm of the R-tree, except that it searches the detail
level nodes and the composite level values of the R-trees.
Firstly, the index tree finds root nodes of the R-tree. And
then, for each of those search all nodes until all data
corresponding to the level value searched, are found.
Figure 2 shows the process that searches data with level 2
in our structure.

Firstly, our structure searches the R-tree corresponding to
level 2. The detail level value in the detail level node is set
by the following algorithm. The smallest detail level value
is 1. As the amount of detail is larger, a detail level value is
shifted left. Therefore, the detail level value is ‘10’ in level
2. The detailed algorithm is following as : for each entry (d,
pr), in detail level nodes, check if d is coarser level than the
level value ‘10’ or d equals to the level value °10°.
Searched R-tree is the trees rooted by node N2 and node N3.

Secondly, our structure searches each entry (p,MBR,c) of
nodes in the searched R-tree, where bitwise AND(c,10) = 10.
The detailed algorithm is following as : for each entry
(p,MBR,¢) of the nodes pointed by the searched R-trees,
perform bitwiseAND (c,‘10°) calculations. If the node is a
non-leaf node, perform to the lower nodes recursively. If
the node is a leaf node, return results.

b}

St 1. Search the R-tree comesponding o

Mot
leved searched from detall level node |

'

o N

| N4 NO

‘ Step 2. Search each entry(p,MBR.C) of nodes, where bitwiseAND(c, 10) = 10
Figure 2. Searching Process

4.2 Updating

To change the structure dynamically, updating is needed.
Our structure is a fully dynamic storage structure. In this
section, a insertion algorithm and a deletion algorithm are
presented for updating our structure.

The way of inserting an object in our storage structure
is classified into two cases. Firstly, an object is modified
from an object in the coarser level. This is a result of a
operation excluding a selection operation. This case is
similar to the insertion algorithm of the R-tree, except for
processing composite level values. Secondly an object is
added from an object in the coarser levels. This is a result
of a selection operation. This process is modifying
composite level values of objects in the coarser level.

The way of deleting an object in our storage structure is
classified with two cases. The first is that an object is
deleted completely in our structure. This case is similar to
the deletion algorithm of the R-tree, except for processing
composite level values. The second is to delete
corresponding the level value from the composite level
value of an object that is needed to be deleted. To delete
the level value, bitwiseAND (c,bitwiseNOT(L)) calculation
is performed and propagated to the root node of the
modified R-tree, where c is the composite level value of an
object to be deleted and L is the level value to be deleted.

5. Implementation and Experiments

5.1 Implementation and Setup

For experiments, we implemented both our storage
structure and the R-tree. All programs were written in
GNU C++ language on Cygwin running on Windows.
Cygwin is the UNIX environment, developed by Red Hat,
for Windows{17].

We used synthetic data. The test data sets are consisted
of 5 different sets varying the total number of objects,
called D1, D2, and D3. The total number of objects is
varied from 60,000 to 300,000, that is 60,000, 180,000, and
300,000. The number of detail levels in generated data is S.
The number of objects in detailed level is larger than the
number of objects in coarser level. For each level, the
number of data is level value by 4,000(12,000, 20,000) in
data set D1(D2 and D3 respectively). All data is generated
by random generator. Coordinates of generated data are
from (0, 0) to (10,000, 10,000). For the number for each
level, the number of objects added from coarser levels is the
number of all objects in coarser levels.

For window query on test data, we generated 10,000
window queries. The window query size is the 10,000
divided by a level value in each level.

5.2 Experiment

We evaluated the average number of nodes read for search
performance comparison and evaluated the total storage
capacity for memory capacity comparison.

Figure 3 shows the average number of nodes for test
queries on test data. We found that number of nodes read
of our structure is approximately equivalent to the number
of nodes read of the multiple R-trees.

Figure 4 shows the total storage capacity for each
structure on test data. The total storage capacity of the
multiple R-trees is the larger than our storage structure,
which was resulted from redundancy.

As a result of evaluation on test data and real data, our
storage structure shows good performance both in searching

ITC-CSCC 2002

and in memory capacity compared as the R-tree. First, for
search performance our index tree is approximately
equivalent to the R-trees for each level. Second, for the
memory capacity, our storage structure is smaller than the
R-tree, which was resulted from not redundancy.

100000

80000

60000

40000

20000

average no. of nodes read

0

50000 180000

total no. of data

300000

B our structure BR-tree

Figure 3. Result of Experiment : Search

30000

25000

20000
15000

10000
5000

total storage capacity(KB)

60000

180000
total no. of data

300000

W our structure @ muttiple R-trees

Figure 4. Result of Experiment : Memory

6. Conclusion and Future Works
The ability to access large amount of geometric objects
quickly is important. Geometric data with detail levels
enables the quick access.

We proposed a new effective storage structure
geometric data with detail levels. Our storage structure is a
fully dynamic structure. We presented the structure and
algorithms. We implemented our structure and performed
evaluation. The results showed the good search
performance and low memory capacity.

The contribution of this paper is following.
First, the proposed method supports results of all types of
geometric data with detail levels efficiently. Until now, any
spatial index structure supporting of all types of geometric
data with detail levels efficiently does not exist. Second, as
compared with the R-tree, our structure decreases memory
capacity and reduces search performance.

For future works, we will perform experiments on more
various types of parameters on test data.

References

[1] P.F.C Edward, K.W.C Kevin, “On Multi-Scale Display
of Geometric Objects”, International Journal on Data
and Knowledge Engineering, 40(1), pp.91-119, 2002.

[2] S.C.Guptill, “Speculations on seamless, scaleless
cartographic data bases”, Proceedings of Auto-Carto, 9,
pp.436-443, 1989.

[3] P.V. Oosterom, "The Reactive-tree : A Storage
Structure for a Seamless, Scaless Geographic Database" ,
Proceedings of Auto-Carto, 10, pp.393-407, 1991,

{4} P.V. Oosterom, V. Schenkelaars, "The development of
an Interactive multi-scale GIS”, International Journal of
Geographic Information Systems, pp.489-507, 1995.

[5] B. Becker, H-W. Six, and P. Widmayer, "Spatial
Priority Search : An Access Technique for Scaless Maps",
Proceedings of ACM SIGMOD, Denver, Colorado,
pp.128-137. 1991,

[6] V. Gaede, O. Gunther, "Multidimensional Access
Methods" , ACM Computing Surveys, 30(2), pp.170-231,
1998.

{71 A. Guttman, "R-trees : A Dynamic Index Structure for
Spatial Searching", Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp.47-
54, Boston, Ma., 1984,

[8] T. Sellis, N. Roussopoulos, and C. Faloutsos, "The R+-
tree : A Dynamic Index for Multidimensional Objects" ,
Proceedings of the 13th International Conference on
VLDB, pp.507-518, Brighton, England, 1987.

{91 N. Beckmann, H.P. Kriegel, R. Schneider, and B.
Seeger, "The R*-tree : an Efficient and Robust Access
Method for Points and Rectangles", Proceedings of ACM
SIGMOD International Conference on Management of
Data, pp.322-331, Atlantic City, NJ, 1990.

[10] I. Kamel, C.Faloutsos., “Hilbert R-Tree : An Improved
R-Tree Using Fractals”, Proceedings of 20th VLDB,
Santiago de Chile, Chile, pp.500-509, 1994.

{11] H. Samet, "The Quadtree and Related Hierarchical
Data Structure", ACM Computing Surveys, 16(2), pp.187-
260, 1984.

[12] H. Samet, R.E. Webber, "Storing a collection of
polygons using quadtrees" , ACM Transactions. Graph,
4(3), pp.182-222, 1985.

{13] J. Nievergelt,, H. Hinterberger, and K.C. Sevcik, "The
Grid file : An adaptable, symmetric multikey file
structure”, ACM Transactions on Database Systems, 9(1),
pp.38-71, 1984.

(14] A. Hutflesz, H-W. Six, and P. Widmayer, "The R-file :
An Efficient Access Structure for Proximity Queries" ,
Proceedings of IEEE 6th International Conference on
Data Engineering, pp.372-379, Los Angeles, CA, 1990.

[15] K.S. Shea and R.B.McMaster, “Cartographic
generalization in a digital environment: When and how to
generalize”, Proceedings of Auto-Carto, 9, Baltimore,
pp.56-67, 1989.

[16] D.H. Douglas, T.K.Peucker, “Algorithms for the
Reduction of Points Required to Represent a Digitized
Line or its Caricature”, Canadian Cartography, 10,
pp.112-122, 1973.

[17] http://www.cygwin.com.

ITC-CSCC 2002

