Analysis of LSI Circuits Coupled with RCG
Interconnects - Asymptotic Method

A .Ushida, A.Hattori, H.Sakaguchi, Y. Yamagami, Y.Nishio
Department of Electrical and Electronic Engineering,
Tokushima University, Tokushima, 770-8506 JAPAN

Abstract

High frequency digital LSI circuits are usually composed
of many sub-circuits coupled with interconnects. They
sometimes causes sericus problems of the fault switching
by time-delays, crosstalks, reflections of signals and so on.
Therefore, it is very important to develop a user-friendly
simulator for solving these problems. Although a moment
matching method is widely used as the reduction technique
of interconnects, it may happen to arise erroneous results
for evaluating the poles far from the origin. In this paper,
we show an asymptotic method in the complex frequency-
domain, where we calculate the exact poles and residues
giving large effect to the transient responses. Then, the
interconnects are replaced by the asymptotic equivalent cir-
cuits using the poles and residues. Thus, we can develop a
users-friendly simulator using the equivalent circuits.

1. Introduction

The analysis and design of high speed LSI chips are be-
coming more and more important, because interconnects in
LSI chips sometime cause the fault switching operations due
to the signal delays, crosstalks and so on. In the last decade,
there have been published many papers concerning to the
transient responses of lossy interconnects [1-5]. The recur-
sive convolution method combining moment-matching tech-
nique [1-3] can be efficiently applied to the analysis of lossy
interconnect terminated by nonlinear elements. However,
one of the serious problems is that the poles far from origin
calculated by the moment-matching technique become er-
roneous because of the Maclaurin expansion technique and
Padé approximation. To overcome the problem, Nakhla et
al. have proposed CFH (complex frequency hopping) [4] for
getting the exact poles. Unfortunately, the algorithm based
on Taylor expansion becomes complex because we need to
solve the algebraic equation with complex coefficients. The
transient analysis of single line interconnect combining the
inverse Laplace transformation and recursive convolution
method are programmed in SPICE 3 [6]. However, it is
sometimes time consuming depending on the parameters,
and cannot be applied to uniform interconnects. In the ref-
erence [7}, the authors have proposed a technique of replac-
ing the interconnect by the discrete n-type and/or T-type
models which are easily applied to SPICE simulator, and it
can be only applied to relatively short interconnects. We
have proposed another elegant method for calculating the
exact poles and residues [8], where the admittance matrix
of interconnect can be described in the form of partial frac-
tion. Then, we can get an asymptotic equivalent circuit in

the complex frequency domain, which can efficiently calcu-
late the transient responses of LSI circuits with SPICE.

In this paper, let us consider large scale gate-array circuits
connected by interconnects in LSI substrate. Note that the
capacitance component in the substrate is dominant com-
pared to the inductance, because the per dielectric constant
of Silicon is over 10 times. Therefore, we can neglect the in-
ductance component and model the interconnect with RCG
multiconductor transmission lines. In this case, all the poles
are located on the negative real axis on a complex plane,
which makes easy to calculate the poles. We also propose the
asymptotic equivalent circuit using the poles and residues.
Thus, this simulator is a user-friendly. In section 2, we show
how to calculate the exact poles and residues. In section
3, the asymptotic equivalent circuit is synthesized from the
partial fractions. We show the illustrative examples in sec-
tion 4. We found from many examples that the asymptotic
method can get the good results even with the lower order
approximation.

2. Calculation of poles and residues

Now, consider a uniform N coupled RCG interconnects in
substrate. The telegraph equation is described by

d_\’_(aa_iﬁ = —RI(z, ) )
dI(z,s) _
L2 — (G +5O)V(,9)

in the complex frequency-domain. Thus, we have
d®V(z,s) _
B CRa R(G + sC)V(z, s)

(2)
d_2%%z_2,s_) = (G + sC)RK(z, 5)

Let us introduce the transfer matrix P, (s) and P.(s) [9] for
describing them in the diagonal forms. Thus, we have

diag[i(s)?] = Pu(s)"!R(G + sC)P.(s) } 3)
diag[Xi(s)?] = Pc(5)"1(G + sC)RP,(s)

where we have the following relations:

P.(s)T = P.(s)7!, P.(s)=RIP,(s)T(s)
P.(s) = (G +5C)'Pe(s)D(s), T'(s) = diaglyi(s)]
(4)
Then, the impedance matrix is described in the following
form; :
V(O, S) — Zn(s) Z12(S) I(O, S) (5)
V(d,s) Z21(s) Z32(s) I(d, s)
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where

Z11(s) = Z32(s) = P, (s)diag[coth \;(s)d]P.(s)~! (6)
Z12(s) = Z31(s) = P, (s)diag[sinh™! \;(s)d]P.(s)~?

Observe that poles of the impedance matrix are found at
the locations satisfying sinh A\;(s) = 0. Thus, we have the
following theorem for calculating the poles.
Theorem 1: The locations of poles satisfying relations (6)
are found by solving the following equation:

2
'R(G+sC)+(Ti) =0, n=1,2... (7

d

Proof: We have from (6) that the poles satisfy the following
relation:

det|P.(s)diagfsinh \;(s)d]P,(s)"'| = 0 (8)

or
det|P.(s)diag[tanh ™ A;(s)d]P,(s) "] = 0 9)

Since P, (s) and P.(s) are nonsingular for n # 0, the poles
satisfying the above two relations are given by

sinhy;(s)d =0, 1=1,2,...,N (10)

where N shows a number of the coupled conductors.
Namely, we have

vi(s)d = jnr, 1=1,2,...,N, n=1,2,... (11)
Therefore, the characteristic equation given by (3) must sat-
isfy the relation (7).

Q.E.D.
Corollary 1.1: The poles po,i and residues ko, for n =0
are given in the following relations:

1
- diag[C;;}d
(12)
Proof: The pole at n = 0in (7) are found from the following
relation:

diagfpo,;] = ~HT SQ" GQSH, diaglko.]

lim P, (s)diagfsinh ™! X;(s)d|P7 ' (s)
A;—0

= (G + sC) ' Pe(s)I(s)(T(s)d) P (s)
= (G +sC)"1/d (13)

Next, let us transform the above relation into the diagonal
form [10}:

(G+5C)™"/d = (HTSQTGQSH + s1) ™ ding[ =] (14)

where S = diag[C;,-]“%, and Q and H are the transfer ma-
trices for C and SQT GQS, respectively. Thus, the poles
and residues are given by (12).

Q.E.D.
Theorem 2: Assume that R, C, G are positive real sym-
metric matrices. Then, all the poles of RCG interconnect
are located on the negative real axis.
Proof: The poles satisfying relation (7) are given by

’(G+SC)+(E)2R_1 =0, n=12,... (15)

d

For simplicity, we rewrite the matrix (15} as follows:

nmw

2
sC+H, =0, where H, = (7) R'+G  (16)

Observe that H, is also a positive real symmetric matrix.
Thus, it can be transformed into the following diagonal form:

SQT(H. +sC)QS =SQTH,.QS +sI=0  (17)

Since SQTH.. QS is the positive real symmetric matrix, the
poles satisfying (17) are negative real numbers.

Q.E.D.
Now, consider the numerical technique for the calculation of
poles. Eq.(7) can be rewritten as follows:

2
sSL+A[=0, for A=(RC) ((-’g’-) I+ RG) (18)
This relation is the characteristic equation of A, so that
we can apply Bocher formular [11] to get the polynomial as
follows:
Bocher formular: For a n x n matrix A, set

[sI+Al=as+sa1+-- 45" a1+ =0 (19)
Then, agp, a1,...,0n-1 are gien by

p—1 = —trace(A)
Qn-z = —% [an_ltrace(A) + trace(Az)]
.......................................... (20)
ap = —% [astrace(A) + astrace(A%)+

-+ + an_1trace(A™ ') + trace(A™)]

Hence, we can numerically solve (19) with Bairstow method
and so on.

Next, let us calculate the residues of (5) [4].
Theorem 3: The residues of Z12(s) and Z31(s) in (5) for
the pole s; is given by

. 1 -1
kis; = — Py(s)dia P.(s
> (s)dios Losh(x,-(s)d)a—ég—}ﬂd] @7
(21)
where 0xg§s) is obtained in the following:
an -1
Be | R(G+3sC) - M(s)* T —2Xx:(s)U;
Ox(s) | — u? 0
s
N [ —Rg:U,- ] (22)

where U; is the eigenvector for A;(s;).
Corollary 3.1: The residues of Z11(s) and Z32(s) are given

by
ki1,; = P.(s)diag [

ml—;] I (s) (23)
ds

Observe that the residues of (21) and (23) are the same ex-
cept for the signs. Then, the impedance matrix is described
by the partial fractions using these poles and the residues in
the following form:

8=8;

ki,ij + ka,i; + k3,ij

25 = Tt s T

4 (24)
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It is very important that how many poles should be chosen
to approximate the matrix. We now consider the special case
of a single interconnect whose impedance matrix is given by

[ g } = Zo(s) {
1(0, s)
X [ I(d,:) ]

Zo(s) = /R/(G + sC), A(s)=+/R(G+sC)
For example, we set the parameters as follows:
R = 50[Q/um), C = 62.8[pF/um], G = 0.1[S/um] d = 1[u].
The frequency responses of Z11(s) = Z22(s) and Z12(s) =
Z1(s) for the order 20 approximation are shown in Fig.1

coth A(s)d

sinh™! A(s)d

sinh™! A(s)d
coth A(s)d

(25)

Then, eq.(5) can be written as follows:

[ V{0, s) ] _ [ Z1(s) + Z2(s)  Z1(s) — Za(s) }
V(d,s)

Z1(s) — Z2(s)  Za(s) + Za(s)

I(0, s)
% [ 1(d, s) ]
Thus, the equivalent circuit is synthesized by the use of
current-controlled voltage sources (Vy, V,) as shown in Fig.2.

(28)

v d=Zl I(d,s) V= Z1 1(0.s)

>

Zy

(a) and (b), respectively. We found from the results that we
have a good result in all the frequency-domain even for the V(0,5) Z, V(ds)
lower approximation.
(o3 ol
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Fig.1: Approximation by partial fraction (Oder=20) R, R, Ron.1
Therefore, we can also expect the good results of the tran- O_E::}_m_ _____
sient responses using the asymptotic equivalent circuit.
. . . Z,— C Cs3 Com-1
3. Asymptotic equivalent circuit 2 !
o—
We found in section 2 that all the solutions are located
: : , (©)
on the negative real axis. In this case, only the poles lo- . ) ) o
cated near the origin will give large effect to the transient Fig.2 : Asymptotic equivalent circuit
responses, so that we will choose few poles around the ori-
gin. Now, let us expand (6) into the partial expansion as where 1 k.
follows: Ci=—, Ri=-,i=0,1,2,...,2M (29)

Z11(8) = Za2(s)

M
ko kai—1 ka;
= + 26.1
s+ po ;[S+P2i-1+3+172i] ( )
le(s) = Z21(S)
M
ko ka1 kai
= + - 26.2
s+ po Z[ S+P2i—1+S+P2i] ( )

=1
where M is defined as the order of approximation of our
asymptotic equivalent method. Now, set

Mk Yk
_ 26 _ 2i—1
Zi(s) = z St pa’ Zy(s) = Z T T 27)
1=0 i=1
where
2
G RG+ (%) .
Po=g pi= %,z: 1,2,...,2M
1

k; = i,i:l,?,...,?M

cd’ Cd

k;’ pi
Note that since the asymptotic equivalent circuit is familiar
with SPICE, we can easily develop the user-friendly simula-
tor.

4. THustrative examples

4.1 Interconnect terminated with linear resistors:
To show the accuracy of our asymptotic method, we com-
pare our result with the numerical Laplace transformation
method [12] which is considered as the exact solution.

10[€2]

Input waveform

1.2ns

Fig.3(a): Interconnect with linear resistor, R = 50{Q2/um]
C = 62.8[pF/um], G = 0.1[S/um], d = 0.3um
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(V]2
Near end Numerical Laplace
1
0
3
[V]Z Near end

Asymptotic method
(order 20)

0 0.1 0.2 0.3 0:4 O.‘5 0..6 0.7
[ns]
Fig.3(b): Numerical Laplace transformation, (c):
Asymptotic method (Order=20)

Observe that both results have exactly same waveforms. We
also found from many examples that we can get the good
results even for the order 5.

4.2 A fulladder circuit coupled with interconnects:
Our asymptotic equivalent circuit can be easily applied to
any circuit. Consider a fulladder circuit coupled with inter-
connects as shown in Fig.4(a).

Half Adder |
T alf Adder Ts Half Adder 2
vy
T2
V2 T5
) e ® Do)
vy o i —

T3

Fig.4(a): Fulladder coupled with interconnects,
R =50[Q/pm), C = 0.628[f F/um], G = 0.6{uS/pm],

NInNTnaL
T

Fig.4(b): Transient response of the fulladder circuit
coupled with interconnects

We found from the transient responses Fig.4(b) that the
waveforms are largely distorted, and they have large time-
delays. They may cause the fault switching.

5. Conclusions and remarks

In this paper, we have proposed an asymptotic equivalent
circuit technique for the reduction of interconnects, where
the interconnects are replaced by the simple RC circuits.
Thus, we can easily get the transient response with SPICE.
At first step, we calculate the exact poles and the residues
of interconnect, and the impedance matrix is describe the
partial fractions. Secondly, we realize the partial fractions
by the equivalent circuit called asymptotic circuit. We found
from examples that we can get good result even with the low
order approximation.

As the future problem, we need to extend our algorithm to
large scale multiconductor interconnects.
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