A Queue Policy for Multimedia Communications

Seong-Ho Jeong
Department of Information and Communications Engineering,
Hankuk University of Foreign Studies, Korea
E-mail: shjeong@hufs.ac.kr

Abstract: To support UDP-based real-time multimedia
applications over the Internet, it is necessary to provide a
certain amount of bandwidth within the network so that the
performance of the applications will not be seriously
affected during periods of congestion. Since the flow rates
of some of these applications do not back off during periods
of congestion, it is also necessary to protect flow-controlled
TCP flows from unresponsive or aggressive UDP flows. To
achieve these goals, we propose a simple queue policy to
support multimedia applications, called threshold-based
queue management (TBQM). TBQM isolates UDP flows
efficiently from TCP flows to protect TCP flows while
supporting bandwidth requirements of UDP applications
that require QoS. In addition, TBQM supports drop fairness
between TCP flows without maintaining per-flow state. We
also present some experimental results to show that the
proposed queue policy can work well.

1. Introduction

With the emergence of real-time multimedia applications
such as packet voice and packet video, UDP traffic has
been increasing over the past few years [9]. In order to
support these real-time applications on the Internet, it is
necessary to provide a certain amount of bandwidth to the
applications within the network so that the performance of
the real-time applications will not be seriously affected
within the network even during periods of congestion.

The flows of these real-time applications do not
typically back off when they encounter congestion, thus
they are called unresponsive or aggressive flows. As a
result, they aggressively use up more bandwidth than other
TCP “friendly” flows that utilize congestion control. This
mix of congestion-controlled and congestion-uncontrolled
traffic could cause an Internet Meltdown [1]. Therefore,
while it is important to have router algorithms support UDP
flows that require QoS by assigning appropriate bandwidth,
it is also necessary to protect responsive TCP flows from
unresponsive or aggressive UDP flows and to provide
reasonable QoS to all users.

Basically, there are two types of router-based algorithms
for achieving a certain QoS: scheduling algorithms and
queue management algorithms. Scheduling algorithms can
provide sophisticated bandwidth control, but they are often
too complex for high-speed implementations and do not
scale well to a large number of users. On the other hand,
queue management algorithms have had a simple design
from the beginning. One of the key examples of queue
management algorithms is Random Early Detection (RED)
[2]. A router implementing RED maintains a single FIFO
that is shared by all the flows, and drops an arriving packet
randomly during periods of congestion. The drop
probability increases as the level of congestion increases.

Since RED behaves in anticipation of congestion, it does
not suffer from the lock-out and full-queue problems [2]
inherent in the widely deployed Drop Tail (FIFO)
mechanism. However, like Drop Tail, RED is not able to
penalize unresponsive flows. The resulting percentage of
packets dropped from each flow over a period of time is
almost the same. As a result, misbehaving flows can
continue to use up a large fraction of the link bandwidth
and have a serious impact on responsive TCP flows.

To better distinguish unresponsive flows, a few variants
of RED such as RED with penalty box [3] and Flow
Random Early Drop (FRED) [5] have been proposed.
However, these algorithms incur extra implementation
overhead since they need to collect certain types of state
information. RED with penalty box keeps information
about unfriendly flows while FRED needs information
about active flows. Furthermore, FRED does not consider
provisioning of specific bandwidth for real-time UDP-
based applications. Recent work in [6] proposes an
algorithm called Stabilized RED (SRED), which stabilizes
the occupancy of the FIFO buffer, independently of the
number of active flows. SRED estimates the number of
active flows and finds candidates for misbehaving flows. It
does this by maintaining a data structure that serves as a
proxy for information about recently seen flows. Although
SRED identifies misbehaving flows, it does not propose a
simple router mechanism for penalizing misbehaving flows.
In addition, it does not consider provisioning of specific
bandwidth for real-time UDP traffic.

The objective of this paper is to present a simple queue
policy algorithm that provides a certain amount of
bandwidth to UDP flows that require QoS and also protects
TCP friendly flows from unresponsive UDP flows. Our
approach also supports drop fairness between TCP flows
without maintaining per-flow state. The rest of the paper is
organized as follows. Section 2 describes the key features
and operations of the proposed queue policy, called
threshold-based queue management (TBQM). In Section 3,
we provide some simulation results showing that it is
possible to meet our goals using the proposed approach.
Finally, Section 4 presents a summary of the paper.

2. Queue Policy Algorithm
The maximum length of a camera-ready manuscript is 4
pages, In this section, we describe our proposed queue
policy, called threshold-based queue management (TBQM)
in further detail. The network model is similar to that used
in the Differentiated Services architecture where a network
consists of edge routers and core routers as shown in Figure
1. The edge routers perform packet classification and
encode certain state in packet headers, and the core routers
use the state encoded in the packet headers for queue

ITC-CSCC 2002

management. The following sections describe the key
features of TBQM.

E: Edge Router
C: Core Router

Figure 1. Network architecture

2.1 Traffic classification

Since we are focusing on UDP applications that require
QoS and TCP applications, TBQM basically supports three
different traffic classes: a UDP class that requires QoS
(hereafter “QoS-UDP class”), better-than-best-effort-
service (BBES) class for TCP traffic, and best-effort-
service (BES) class for other traffic. We classify incoming
traffic into QoS-UDP class, BBES class, or BES using
packet state information inserted in the IP packet header.
Note that carrying state in packets is explained in [8]. Initial
packet classification is performed at the edge routers which
may contact a policy server. Core routers simply check the
packet state information to classify incoming packets.
Although packets are classified, there is still only one queue
of data packets in the core router, shared by all traffic
classes.

2.2 QoS support for UDP flows and protection of
TCP flows
In order to provide high-quality service to the QoS-UDP
class, we allocate a certain amount of bandwidth to the
QoS-UDP class by assigning a maximum allowable buffer
amount for the QoS-UDP class in edge routers and core
routers. The necessary buffer size is determined by the
agreed upon traffic profile of the specific QoS-UDP traffic
which can be determined based upon an admission control
procedure or negotiation between a user and a service
provider. Suppose that two flows share a finite buffer of
size B and are multiplexed onto a link of capacity C using a
FIFO scheduler. Flow 1 (e.g., QoS-UDP flow) has peak rate
specified in its traffic profile while flow 2 is potentially
aggressive, and could swamp the first flow if its arrival into
the buffer is unregulated. We logically partition the buffer
into two portions that correspond to the maximum
occupancy levels allowed for flows 1 and 2, respectively, so
as to ensure that flow 1 does not lose packets. In this case,
flow 1°s share of the buffer should be at least as large as its
share of the bandwidth, i.e.,

B, /B2 p,/C
where B, is the flow 1’s share of the buffer. It is also shown
in [4] that if flow i requires a guaranteed service rate p; and

is peak-rate conformant, a buffer occupancy threshold of
Bp; /C is sufficient to guarantee lossless service.

Based on these observations, it is possible to provide a
certain amount of bandwidth to QoS-UDP traffic class
using a specific buffer occupancy threshold for QoS-UDP
traffic class. This also makes it possible to isolate QoS-
UDP traffic from TCP traffic by managing each traffic class
separately. It should be noted that all packets are still placed
in the same buffer using a FIFO approach. The proposed
algorithm keeps track and limits how much of the buffer is
being used by each of the traffic classes, thus
accomplishing the desired goals.

2.3 A simple admission control for UDP traffic

To provide appropriate service to QoS-UDP class traffic, an
admission control algorithm is needed to control the
admission of QoS-UDP flows based on the availability of
resources within the network. We use a simple admission
control scheme to decide whether a new QoS-UDP traffic
flow is accepted or not. The admission control is based
upon the rate information of QoS-UDP flows. The QoS-
UDP flows may be sent at constant bit rate (CBR) or
variable bit rate (VBR). In the case of CBR QoS-UDP
flows, CBR applications simply put the “peak rate”
information into the IP header of outgoing packets. In the
case of VBR QoS-UDP flows, the edge router estimates the
arrival rate of the flows based on the exponential averaging
method as in [7]. The calculated rate information is inserted
into the IP header of outgoing packets. Note that reference
[7] computes flow arrival rates and inserts these rates into
packet labels. We utilize this same technique here.

Core routers maintain two variables: the aggregate
arrival rate and aggregate accepted rate for QoS-UDP flows.
When a special packet, a rate-request packet from an edge
router arrives, the core router compares the requested rate
with available capacity. If the requested rate is less than or
equal to the available capacity, the request will be accepted
and the core router forwards the request packet downstream.
Otherwise, the request will be rejected, and a reject
message will be sent back to the source edge router. Upon
receiving the reject message, the edge router does not
accept incoming packets that belong to the rejected flow,
and it also sends a reject message to the sending host. The
sending host would then be made aware that the network is
unable to meet its request for bandwidth.

Note that the aggregate accepted rate should be updated
because some QoS-UDP flows may have terminated. To do
this, the core router calculates an aggregate arrival rate for
QoS-UDP flows when a packet arrives. If the aggregate
arrival rate is less than the aggregate accepted rate over a
certain time interval, the aggregate accepted rate is updated
using the largest value of the aggregate arrival rate over the
time interval. The aggregate arrival rate A and aggregate
accepted rate F are updated using the exponential averaging
method [7]. That is,

A =(1—e"")-il,—+ e T'X4,

Fm = (1_ e-T/K)%_* e-T/XFou

where 1 is the length of arriving packet, T is the inter-arrival
time between the current packet and the previous packet, K

ITC-CSCC 2002

is a constant, A,y and F,4 are the values of A and F,
respectively before the updating,

2.4 Metering at edge routers

In order to minimize the impact of QoS-UDP traffic on
well-behaved TCP traffic, we use profile meters for the
QoS-UDP class traffic. If a QoS-UDP flow is admitted by
the admission control procedure described above, we
assume that the edge router maintains a traffic profile for
the admitted QoS-UDP flow. A traffic profile contains an
agreed upon rate between a user and a service provider. The
edge router continuously monitors incoming QoS-UDP
traffic to check whether or not the incoming traffic violates
the traffic profile. Whenever QoS-UDP traffic exceeds the
traffic profile, the exceeding traffic is discarded so that TCP
traffic will not be affected by the excess traffic.

2.5 Congestion avoidance and fairness control

We use a simple congestion notification mechanism for
TCP flows to avoid congestion. Edge routers insert a
special packet, called choke, every N packets of each TCP
flow. The core router maintains a separate special queue for
keeping choke packets for TCP flows. The congestion
detection function is performed using an average threshold
of the logical TCP queue. The core router maintains
statistics about the average queue length using the
exponential weighted moving average (EWMA) method.
When the average queue length exceeds the threshold, the
core router randomly selects a choke packet from the choke
queue and send it back to the source edge router so that the
edge router can discard incoming TCP packets based on the
received number of choke packets. Since each choke packet
contains its own flow ID, it is easy for the edge router to
decide which packets to discard. In this manner, packets are
discarded only at edge routers, and TCP flows will be
dropped fairly based on their rates since the drop rate will
be based on the number of received choke packets. This is
basically similar to the technique in [10}, but our proposed
approach maintains only a single data queue rather than
multiple queues.

3. Simulation Results

In order to demonstrate the effectiveness of TBQM, we
used simulations to compare the performance of TBQM to
simple drop-tail (FIFO) queuing, RED, and FRED. Since
the focus of our simulations was to show how well TBQM
behaves to support UDP traffic as well as TCP traffic, we
only considered the QoS-UDP class and BBES class. Note
that our approach can be extended to support more classes
by using multiple buffer occupancy thresholds.

The simulated network topology is shown in Figure 2,
where there are four TCP sources and five UDP sources,
three routers, and a sink. The TCP traffic originates from a
collection of fip sources, and the UDP traffic originates
from a set of CBR sources. The edge router maintains
traffic profiles for UDP sources after the admission control
procedure is complete as described in section 2.1.3. Each
UDP source is allowed to send 1 Mbps UDP traffic. The
edge router continuously monitors incoming UDP traffic to
check if the input traffic violates the traffic profile.

In our simulations (we used the network simulator NS),
we considered a single congested link between two core
routers, which is shared by all flows. Specifically, a core
router is configured with a 10 Mbps outbound link that is
the bottleneck link in the network. When there is no
congestion on the link, TCP users are capable of utilizing
about 62 % of the 10 Mbps link, in aggregate.

It is assumed that the minimum guaranteed rate for each
UDP user is 1 Mbps. Since there are five UDP users, it is
necessary to reserve 5 Mbps, in aggregate, in the network.
The total buffer size of FIFO queue is 30 KB. Based on the
discussion in section 2, the buffer occupancy threshold for
QoS-UDP traffic is calculated as 15 KB. Accordingly, the
available buffer size for other traffic is 15 KB. RED and
FRED as well as a FIFO queue management scheme were
simulated for comparative purposes. The values of minth,
maxth, wq, maxp for RED and FRED are 15 KB, 30KB,
0.002, and 0.02, respectively.

Sources
TCP i
Source 1
(.
Source 2
e d |
TCP
Source 3 1§
TCP L
Source 4 B

43
UbDP ! Router
Source 1 (Edge)

uppP
Bottleneck
soum 2 ;- Link
uDP I/
Sourcs 3
UDP
Source 4
UDP
Source 5

10 Mb/s

20Mb/s i Router jw 10 Mb/s | Router g5 Mb/s

{Core) Y (Core) Sink

Figure 2. Network topology for simulations

Figure 3 illustrates the TCP throughput measurements
on the outbound link of the congested router. In each
experiment, a different queue management scheme is
employed in all routers including edge and core routers. We
ran infinite TCP sources during simulations. At time 30s,
all UDP sources begin to generate unresponsive QoS-UDP
traffic at the rate of 1 Mbps each. Thus, the total aggregate
input rate of UDP sources is 5 Mbps from time 30s to 50s.
At time 50s, UDP source 5 additionally generates 3 Mbps
unresponsive QoS-UDP traffic until time 70s. As a result,
the total aggregate input rate of UDP sources is 8 Mbps
from time 50s to time 70s. All UDP sources stop generating
traffic at time 70s.

As shown in Figure 3, the aggregate throughput of TCP
traffic is approximately 6.2 Mbps for each of the four
methods until time 30s. After five UDP sources are turned
on at time 30s, the aggregate throughput of TCP traffic in
all scenarios is reduced to approximately 5 Mbps.
Congestion begins at time 30s since the total input rate
(5+6.2=11.2 Mbps) exceeds the link capacity of 10 Mbps.
In our simulations, choke packets were not used to reduce
congestion so that we could show what happens when there
is congestion. Note that RED shows worse TCP
performance during this time interval since early discarding

ITC-CSCC 2002

of TCP packets reduces the TCP input rate, and RED does
not protect TCP flows from unresponsive QoS-UDP flows.
At time 50s, congestion is more severe since the total
aggregate input rate is increased to 14.2 Mbps. As shown in
Figures 3-(b), (c), FIFO and RED show the worst TCP
performance since unresponsive QoS-UDP traffic is not
punished and consumes most of the link capacity. The
results in Figure 3-(d) show that FRED protects TCP flows
from QoS-UDP flows, however FRED does not guarantee
the minimum rate (5 Mbps) for QoS-UDP traffic. On the
other hand, as shown in Figure 3-(a), TBQM shows better
performance than other schemes in terms of TCP flow

protection and minimum rate guarantee for QoS-UDP flows.

That is, from time 50s to 70s, TCP traffic is not affected by
excess QoS-UDP traffic, and TCP gets approximately 5
Mbps continuously. Furthermore, QoS-UDP traffic gets the
desired minimum rate (5 Mbps) during the 50 to 70 second
simulation time period.

0 X0

i ! i | T i i

i i : i i
—t fKPealic| | ! ol —t TP ralic
12 ApepetugnidUiPufic l—2 Mlvﬂfﬂwldm’"‘ﬂ

“
N

H
2
1F

4

Throughtput (b/s)

A

Throughtput (bis)
by a n

)

Y]

1

A
D D 40 5 € MV L N W
Tre(s}

D D 0 D 0 PV H X W
Trrefd

{a) TBQM {b) Drop Tail
"d “x10‘
i T 1
A=Y T

7 7
R ggw
3 5
£ £5
E—T R £

')

1

D » 0 % @
T (9

2 » 4 D @ TV N B W % M W N
G

(c} RED {d) FRED
Figure 3. Aggregate throughput achieved by UDP and TCP
flows sharing a bottleneck link of capacity 10 Mbps in the
network

4. Concluding Remarks

The volume of multimedia traffic in the Internet is
dramatically increasing. The current best-effort forwarding
model of the Internet is frequently insufficient for
supporting multimedia traffic requirements. For example,
the current Internet does not efficiently support UDP-based
real-time applications such as voice over IP and video
conferencing.

To satisfy the performance requirements of these ever
more common applications, it is necessary to provide a
certain amount of bandwidth within the network so that the
performance of the applications will not be seriously
affected during network congestion. Since the flow rates of

some of these applications do not back off during periods of
congestion, it is also necessary to protect responsive TCP
flows from unresponsive UDP flows. To achieve these
goals, we proposed a queue policy, called threshold-based
queue management (TBQM). TBQM efficiently isolates
UDP flows from TCP flows to protect TCP flows. TBQM
does this by using logical buffer partitioning so as to
support bandwidth requirements of UDP applications by
reserving buffer space for UDP traffic.

To support our queue policy, we also proposed a simple
admission control procedure for UDP traffic and a drop
fairness control scheme for TCP traffic during periods of
congestion. To demonstrate the effectiveness of TBQM, we
compared the proposed approach with Drop-Tail (FIFO),
RED, and FRED using simulations. TBQM showed better
performance than other schemes in terms of TCP flow
protection and minimum rate guarantee for UDP flows.

References

[1] Braden, B., Clark, D., Crowcroft, J., Davie, B.,
Deering, S., Estrin, D., Floyd, S., Jacobson, V.,
Minshall, G., Partridge, C., Peterson, L.,
Ramakrishnan, K., Shenker, S., Wroclawski, J., Zhang,
L., “Recommendations on queue management and
congestion avoidance in the internet,” IETF RFC
(Informational) 2309, April 1998.

[2] Floyd, S. and Jacobson, V., “Random Early Detection
Gateways for Congestion Avoidance,” IEEE/ACM
Transaction on Networking, vol. 1, no. 4, pp. 397-413.
August 1993.

[3] Floyd, S., and Fall, K., “Router Mechanisms to
Support End-to-End Congestion Control”, LBL
Technical report, February 1997.

[4] Guerin, R., Kamat, S., Peris, V., and Rajan, R.,
“Scalable QoS Provision Through Buffer
Management,” Proceedings of ACM SIGCOMM 98,
September 1998.

{5] Lin, D., and Morris, R., “Dynamics of random early
detection”, Proceedings of ACM SIGCOMM’97, p.
127-137, October 1997. .

[6] Ott, T., Lakshman, T. and Wong, L., “SRED:
Stabilized RED”, Proceedings of INFOCOM 99,
March 1999, p. 1346-1355.

[7] Stoica, I., Shenker, S., Zhang, H., “Core-Stateless Fair
Queueing: Achieving Approximately Fair Bandwidth
Allocations in High Speed Networks,” Proceedings of
ACM SIGCOMM 98, September 1998.

[8] Stoica, I. and Zhang, H., “Providing Guaranteed
Services Without Per Flow Management,”
Proceedings of ACM SIGCOMM*98, September 1999

[9] Thompson, K., Miller, G., Wilder, R., “Wide-Area
Internet Traffic Patterns and Characteristics,” IEEE
Network, vol. 11, no. 6, November/December 1997.

[10] Venkitaraman, N., Sivakumar, R., Kim, T., Lu, S,
Bharghavan, V., “The Corelite QoS Architecture:
Providing a Flexible Service Model with a Stateless
Core,” Working Draft of U

ITC-CSCC 2002

