An efficient search of binary tree for huffman decoding based on numeric
interpretation of codewords

Byeong-Il Kim', Tae-Gyu Chang' and Jong-Hoon Jeong’
! School of Electric and Electrical Engineering, Chung-Ang University
#221 Heukseuk-dong Dongjak-gu Seoul 156-756, Korea,
Tel. : +822-820-5318, Fax : +822-812-1293
e-mail : tgchang@cau.ac.kr
*Samsung Electronics Co. Ltd.,
#416 Maetan-3Dong, Paldal-Gu, Suwon City, Kyngki-Do,442-742, Korea

Abstract: This paper presents a new method of Huffman
decoding which gives a significant improvement of
processing efficiency based on the reconstruction of an
efficient one-dimensional array data structure
incorporating the numeric interpretation of the accrued

codewords in the binary tree. In the proposed search

method, the branching address is directly obtained by the
arithematic operation with the incoming digit value
eliminating the compare instruction needed in the binary
tree search.

The proposed search method gives 30% of
improved processing efficiency and the memory space of
the reconstructed Huffman table is reduced to one third
compared to the ordinary compare and jump'based binary
tree. The experimental result with the six MPEG-2 AAC
test files also shows about 198% of performance
improvement compared to those of the widely used
conventional sequential search method

1. Introduction

Binary tree search can be regarded as a promising
means for Huffman decoding owing to its inherent
advantages of searching efficiency and narrowed variations
of time required for the search of an individual codeword
{1]{2]. However, the binary tree search suffers from the
complexities involved with the construction and handling of
the linked-list based binary tree [3][4]. Especially, the
comparison and the jump, which are the key operational
units constituting the binary tree search, play as the major
causes of decreased processing efficiency by disturbing the
flow of pipelining and by adding the coding complexity in
general.

It is well known that the search efficiency can be
significantly improved if the search can be aided or guided
by some numeric operation, as exemplified by the data
hashing and the content addressable memory techniques
[5][6]. Recently published several variants of the binary
tree search can be considered as an effort to improve the
processing efficiency by partially adopting the numeric aid
in the search [5][6].

This paper presents a means to completely eliminate
the use of conditional statement in the branching operation
of the Huffman decoding, consequently giving the
significant improvement of processing efficiency compared
to the ordinary ‘compare and jump’ based binary tree search
method. The branching address can be obtained by the
direct arithmetic operation with the incoming binary digit,

importantly, without invoking any condition checking
statement. The proposed search technique results from the
efficient one-dimensional array data structure devised by
adopting the numeric interpretation of the accrued
codewords in the tree. The non-skewed characteristics of
the Huffman tree are the major feature that enables the
realization of the proposed search technique. The non-skewed
characteristics refers to that of the tree in which a node branches
always to a paired child nodes having the values of zero(0) and
one(1), respectively.

2. Huffman Decoding Based on Numeric
Interpretation of Codewords

Huffman decoding is based on the reconstruction of
the efficient one-dimensional array data structure. Figure 1
shows the construction of the binary tree data structure in a
form of a static one-dimensional array, where the array
index assigned for each node follows the order of layer in
the tree first then the accrued code values within the same
layer, i.e., from left to right in the tree. Therefore, the array
index follows the increasing order of the accrued code
values. For each leaf node, the return value replaces the
binary digit associated with the node.

Based on the reconstructed array, the branching
address can be obtained by the direct arithmetic operation
with the incoming binary digit as shown in equation (1).

addr = addr + DATA(addr) + new _digit() (1)

Where addr indicates an array index of the Huffman
decoding table, DATA(addr) is the value of the array
element referenced by the addr, and new_digit() refers to
the function which returns the value of the newly read digit
from the bitstream to decode.

The Huffman codeword table, which is illustrated in
table 1, is constructed based on the array depicted in figure
1. The constructed table consists of one dimensional array
where each element contains either the corresponding offset
value to jump for the next search or the return value in case
for the leaf node. The two columns with the headings of
‘left-0’ and ‘right-1’, which are not part of the table but are
included only for illustration, show the absolute branch
address values for the next search associated with the value
of codeword’s new binary input digit, i.e., zero and one,
respectively.

ITC-CSCC 2002

@ ' Layer-0
O —D | Layer-1
Y . b
“ 0 <1/ Layer-2
.Y <D 0>+~ «es | Layer-3
. Y : .
— ‘ 0 <P @ 1 Layer-4
]] |
SN Y R
| |
|
® @
H
§ : Binary tree
1-dimensional
S—— array
v
layer {O} 1 2 3 4 5 6 \
index|-10F112|3]4(5[6]|7}18{9|10|11}12}13 *°*

node | . SOl | ||| 1t{o].. 1 s0e
value

return | R -1 -1~ -t-1... - eee

internal- leaf-
<> node e node
-—» case-1 -—» case-0

Figure 1. Reconstruction of the efficient one-dimensional
array data structure from the Huyffman tree.

The required memory space is reduced to one third
compared to the ordinary binary tree, where, for each node,
three memory locations are required to hold the address for
left branch, the address for right branch, and the data for the
node, respectively. On the other hand, the proposed array
requires only one memory location for each node, since
only the offset value to jump to the left branch node or the
return value for the leaf node is stored as shown by the box
marked with bold lines.

The Huffman decoding procedure based on the
proposed numeric computation of the branch offset address
using the equation (1) is described by the flow diagram
shown in figure 2. The Huffman decoding procedure based
on the ordinary ‘compare and jump ' based binary tree
search is described by the flow diagram shown in figure 3.

As compared in the two flow diagrams, the compare
statement needed for the branch in the conventional search
can be eliminated in the proposed search method, yielding
about 33% of improvement in processing efficiency as
expressed in the following.

Table 1. One-dimensional array structure reconstructed

Jfrom the Huffman tree.

' . offset return

index left-0 right-1 () : right-1 value
- - - B 60
1 2 3 1+(1) -
2 4 5 2+(1) -
3 6 7 3+(1) -
” - -) 59
5 8 9 3+(1) -
6 10 1] 4+(1) N
S - - 3 61
5 - - - 58
10 - - - 62
11 12 13 1+(1) -
12 - - - >
13 - - - 6

Percentage improvement of the processing efficient
A[l #of instructias per searchof the proposednethod)xl 0
d

#of instructins per searchof theconventioal metho

=(l—§}<100z33[%]

The actual improvement of processing efficiency
becomes much higher than 33% if the pipelining stall effect
of the compare and the jump instructions is considered.

l

addr = start index of
Huffman table

»
) 4

Yes

ifladdr = leaf_node return DATA(idx)

addr == addr +
DATA(addr) + new_digit()

Figure 2. Flow diagram of the Huffman decoding based on
the numerical computation of the branch address.

ITC-CSCC 2002

l

addr = start index of
Huffman table

[

ifladdr ==leaf_node] return DATA(addr)

No
if(new_digit(}==0)
Yes No
y

addr = left_node_addr addr = right_node_addr

Figure 3. Flow diagram of the Huffiman decoding based on
the compare and jump ’instruction.

3. Experimental Results : MPEG-2 AAC

The proposed Huffman decoding method is realized
for the MPEG-2 AAC decoder, and the average required
number of searches is measured for the performance
evaluation of the Huffman decoder. Six MPEG-2 AAC
encoded test files provided in the MPEG website are used
in the performance evaluation.

To provide a practically realistic figure of the
performance improvement, the performance results of the
suggested Huffman decoding method are compared with
those of the sequential search based Huffman decoding,
which is in wide use for its implementation simplicity.

Twelve different Huffman codebooks are used in the
MPEG-2 AAC decoder to achieve the optimized
compression reflecting the human pshychoacoustics
according to the signal characteristics in different frequency
bands.

The codebook-wise results of the average number of
searches are compared for the two Huffman decoding
methods in table 2. It is shown, for this specific MPEG-2
AAC test file, that the performance improvement ranges
from 30% to 777% depending on the codebook. In average,
the proposed search method achieves 75% of performance
improvement over the conventional sequential search
method for this specific MPEG-2 AAC test file.

The same performance evaluation is carried for the six
different MPEG-2 AAC test files and the results are
summarized in table 3. It is shown that the improvement of
the processing efficiency of the proposed search method
ranges from 24% to 776% depending on the files. Such

Table 2. Results of the average number of searches for
each Huffman table

tota] | 2verage number of
search n a],) searches
codebook | depth/ umfe sod percentage
number | table | I © propo sequential vernent
> |search| search h (%)
size es method mse:&l%d
operation

scalefactor | 19/121 | 14022 3.91 5.09 30.01
1 16/81 | 5624 451 12.50 177.98
2 16/81 | 7857 539 18.61 245.11
3 16/81 | 16170 377 : 6.46 71.11
4 16/81 | 8680 477 1142 13932
5 16/81 | 28794 3.08 451 46.35
6 16/81 | 1086 517 14.04 172.58
7 16/64 | 2958 2.64 3.29 24.80
8 16/64 | 582 4.81 11.13 131.28
9 16/169| 234 2.94 5.09 73.26
10 16/169 | 2594 6.51 33.60 415.63
11 16/289 | 7640 741 65.02 776.43

Table 3. Performance comparison results for the six
MPEG-2 AAC test files.

MPEG.2 AAC total number of searches percentage

test fil proposed sequential | improvement

est liles search search (%)
method method

L1_44100.aac | 407,591 1,168,714 187
L2 44100.aac | 404,608 1,238,404 206
MI1_32k.aac 360,727 1,236,965 243
M1 _44k.aac 371,423 941,376 153
Sin2_32000.aac| 174,997 511,710 192
Sin2_44100.aac| 239,362 740,700 209
average 326,451 972,978 198

performance improvement of the Huffman decoding can be
considered as a significant result considering that the
Huffman decoding is one of the major units occupying the
most of the resources required for the MPEG-2 AAC
decoder.

4. Conclusions

This paper presents a new method of Huffman
decoding which gives a significant improvement of
processing efficiency compared to the ordinary ‘compare
and jump’ based binary tree search method as well as to the
sequential search method. In the proposed search method,
the branching address is directly obtained by the arithmetic
operation with the incoming digit value eliminating the

ITC-CSCC 2002

compare instruction needed in the binary tree search. The
realization of the proposed search is based on the
reconstruction of an efficient one-dimensional array data
structure incorporating the numeric interpretation of the
accrued codewords. The improved processing efficiency is
about 33% and the required memory space of the
reconstructed Huffman table is reduced to one third
compared to the ordinary ‘compare and jump’ based binary
tree.

The proposed Huffman decoding method is applied
together with the sequential Huffman decoding method to
the implementation of the MPEG-2 AAC decoder for the
purpose of performance evaluation. Through the
experimental results with the six MPEG-2 AAC test files, it
is shown that, in average, 198% of performance
improvement is achieved compared to those of the
sequential method. The performance improvement of the
proposed Huffman decoding can be considered as a
significant result considering that the Huffman decoding is
one of the major units occupying the most of the resources
required by the MPEG-2 AAC decoder.

References
[1}S.HO and P.LAW, “Efficient hardware decoding
method for modified Huffman code”, Electronics
letters, 1991, Vol.27, pp. 855-856
[2]1 K. L. Chung and J. G. Wy, “Level-compressed Huffman
decoding”, IEEE, 1999, vol. 47, pp. 1455-1457
[3] W.Hamming, “Coding and information theory”,
prentice-hall, 1986, pp. 51-78
[41Khalid sayood, “Introduction to data compression”,
morgan kaufmann, 1996, pp 39-73
[5]1 H.D.Lin and David G, “High throughput reconstruction
of Huffman-coded images”, IEEE, 1989, pp. 172-175
[6] Keshab K. Parhi, “High speed Huffman decoder
architectures”, IEEE, 1991, pp. 64-68
{71 ISO/IEC JTC1/SC29/WG11 N1650 "IS 13818-7
(MPEG-2 Advanced Audio Coding, AAC)"
[81M.bosi and K.Brandenburg, ISO/IEC MPEG-2
Advanced Audio Coding, J. Audio Eng. Soc, 1997,
Vol.45, pp 789-814

ITC-CSCC 2002

