A Robust Algorithm for Tracking Non-rigid Objects
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Abstract: In this paper, we propose a new object tracking
algorithm using deformed template and Level-Set theory,
which is robust against background variation, object
flexibility and occlusion. The proposed tracking algorithm
consists of two steps. The first step is an estimation of
object shape and location, on the assumption that the
transformation of object can be approximately modeled by
the affine transform. The second step is a refinement of the
object shape to fit into the real object accurately, by using
the potential energy map and the modified Level Set speed
function.

Experimental results show that the proposed algorithm
can track non-rigid objects with large variation in the
backgrounds.

1. Introduction

Object segmentation and tracking are basic and essential
steps for many video processing applications and the
advanced video compression standards, such as surveillance
system, MPEG-4 and MPEG-7. Since some of these
applications require more accurate object shape and
location, many algorithms for tracking an object with
accurate object shape have been proposed. However, some
methods assume the hypothesis of rigid object in the image
sequences. If the object is non-rigid or the object shape
flexibly changes, accurate tracking of the object becomes
more difficult. To solve this problem, several algorithms

have been proposed including Active Contour
Model(Snake){1][2], Deformable Template[3]{4], and
Level Set Theory[5][6].

In this paper, we propose a new tracking algorithm for
non-rigid objects, which is robust against background
variation, object flexibility, and occlusion, using deformed
template and Level-Set theory. The proposed tracking
algorithm is based on the model-based approach and the
edge-based approach among the well-known tracking
models.

The organization of this paper is as follows. First, we
present the overall scheme of the proposed algorithm. In
section 2, we define a potential difference energy function
used in the process of estimation and refinement and
describe main steps for object estimation and refinement. In
section 3, the performance of the proposed tracking
algorithm is evaluated with experimental results.

2. The Proposed Algorithm

The proposed tracking algorithm is composed of two parts.
The first step is to estimate the shape and location of

template object using affine transform. The second step is
the refinement to accurately fit to real object shape using
the potential map and Level Set speed funtion.

The overall scheme of the proposed object tracking
algorithm is shown in Fig . 1.
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Fig. 1. Overall scheme of the proposed algorithm

2.1 Potential Difference Energy Function(PDEF)

To estimate and refine the object shape in the next frame,
we design a potential difference energy function(PDEF).
This PDEF is used instead of pixel intensity in the process
of object estimation and refinement. Therefore this energy
function must be designed so as to have small values in
case the object template is identical with the estimated
object region and around edges. It is composed of two
terms including inter-region distance and the edge values,
which means the degree of difference between the initial
template and the object shape estimated in the next frame.
First, inter-region distance energy(E,eion) is the summation
of difference between each pixel intensity in the template
and in the estimated object region on the target frame.
According to whether the region belongs to the object or
background, the weight w(r) is differently applied as in
equation (1).

1-y rbelongs to object region
w(r)=140
¥ r belongs to background region
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Inter-region distance energy(Eeion) is calculated using
equation (2).

El.region (Xs s Xc)

= T wR, (X, +d0)-(1, (X, +dX) - L,(X, +dX)) )

dX eregion

where / is multi-resolution level, ¢ is template, X;, X, is a
pixel on template and the target frame, and /, /, is a pixel
intensity on template and the next frame, respectively.
R;,(X) decides whether a pixel X belongs to object or
background.

(a) 3x3 mask (b) mask for coarse-to-fine strategy
Fig. 2. Mask of weights

Fig. 2 shows the 3x3 mask of weights and mask of weights
for coarse-to-fine strategy.

The final inter-region distance function is expressed as
equation(3) by the summation for each multi-resolution
level.

Eregfon(X:’Xc)= ZEl,region(X:’Xc) (3)

lelevel

In order to express the energy of edge, we define it as the
inverse derivative edge filter with a small value as in
equation(4). Therefore, this energy has a small value
around edges.

1

) — “)
VI(X)|+¢&

Eedge (Xc

where | V/ (X,)| is the derivative edge detector and € is a

small value. Finally, we define the potential difference
energy function by multiplying two terms as in equation(5).

Epotemial(Xs’Xc)=Eregion(Xs’Xc)'Eedge(Xc) (5)

This potential difference energy function(PDEF) is used to
estimate the affine motion parameters in the next process,
instead of pixel intensity.

2.2 Estimation of object boundary
Affine model is widely used to get the parametric motion in

many applications[6]. We also use the affine transform to
obtain the motion parameters between the object template

in the current frame and target object in the next frame,
based on the assumption that the object transform follows
the affine transform.

In this paper, to reduce the error caused by occlusion and
background variation, we use the Tucky-Weight function as
in equation(6).

(2 2N3 6
wm(x,C)={0(C FPICifh<C ()

otherwise

Also, in order to overcome the time consumption and local
minima problem, we use the coarse-to-fine approach.

We firstly define the object PDEF (E,,,(4)) transformed
to an arbitrary pixel X; on the object template with affine
transform matrix 4 as shown in equation (7).

Elmm' (A)= ZEpolerm'al (X.\"trans (Xsz))’ (7)

X jeshape

where frans(X;, 4) is the location of point X; moved by
affine transform matrix 4.

Since we consider the class of 2D polynomial motion
models, these models can be expressed in a general way as
in equation(8)

V,(X,)= B(X,)A, (8)

where X; = (x;, y;) denotes the spatial image position of a
point and B is a matrix depending only on the point
coordinates. Equation(8) is linear with respect to the n
motion parameters(4 = Jas shown in equation (9)).

5=, & 5 6, 6 5F ©

We can state the problem of estimating the parameter & as
the minimization of the cost function E,,(4) using
iterative method and coarse-to-find strategy as in
equation(10)-(12). We finally obtain an estimation of & as
in equation (13).

5=, 8 8 8 8 5
5, 8, 6. (10
4=|% % ¢
d e f
Er(4,)
= B (A, )+ 8B, ()
d

= Epa(Ay )+ =B (41)+8

n-1

= Y E(X,.trans(X,, 4, )+ . d E(X, trans(s,4,.,))-6

seshape X, eshape n-1

dE dE\ [ dx, dy, ) :
= —_— | = = L
Z[E(X,,trans(x,,A"-l»l+Z[ & dy}) [ T dA]
_ dE dEY{x, y, 1 0 O 0} ,
_Z[E(Xs,lrans(X,,A,,_l))hZ(dx,,dy’) (0 0 0 x y 1)5
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B, = X[ (X..4,.) E,, ,,m,».,,(s trans(X,, 4,.)))

A =Z w ( ). pommal dEPp[gn[,al x, y, 1. 0 0 0
" et a, J{o 0 0x y 1

(12)
Etrans (‘an) = Bn—l + An—l ) én

5, = (An—lT ‘A, l(An—1T '_Bn—l)

n

(13)

The details of this estimation process are shown in the
following.

function A = estimate(4,)
iteration « 0
A<« A4
while (iteration < maxyerion ) {
iteration <« iteration + 1
compute 4, B
dd« (4" -4y (4"--B)
weight = 1
while ( weght < min,eig ) {
If (Egans(A+0d 4) < Erans(4) ) {
A—A+ad 4
o« o/2
}

if (weight < o) return 4

return 4
end function

2.3 Refinement of object shape

In the previous process, we estimate the object position, but
since it can’t cover the change of object boundary itself, we
add the refinement process for object boundary to handle
the object flexibility. To exactly fit into the object boundary,
we use the probability map of object shape and the
modified Level Set speed function. PDEF defined in the
previous section may be modified to be applied to Level Set
theory by ftransforming the energy function to the
probability function of object boundary.

The probability map is generally expressed as the inverse
of potential difference energy function(PDEF). But, it needs
to be normalized since each pixel on the boundary doesn’t
have a consistent probability value. We normalize the
energy function(PDEF) for a pixel on the estimated
boundary using only the higher ranked m values as in
equation(14).

LP,,,. = normalize(E potentiat (X 59 X))

mlnm (E pom-tial) -E posential X £ X )

minm (E potential ) — min 1 (£ potential )
0 otherwise
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if E(X,,X)<min, (E

potential )

where miny(E) is the m-th small value among pixels on the
object boundary, and min,(E) means the smallest value.
The final probability map is defined by selecting the
maximum value among the normalized probability for a
pixel on the object boundary as shown in equation (15).
(15)

(X)) = max LP

shape

(X, X)

shape

This probability model is very similar to the probability
map used in the maximum likelihood method.

Finally, to refine the exact object shape, we utilize the
Level set speed function proposed by N. Paragios and R.
Deriche[2], as shown in equation (16).

4 = (g(l o) -k +Vg(l,o)- N IJ|V¢] (16)

where ¢ is the signed distance function, x is a curvature for
function ¢ at the given position, and g(7,g) is the gradient
for edge image 1.

The probability map may be directly applied to Level Set
speed function. But, to overcome the problem of occlusion
and execution time, we modify the original speed function
by adding the term a-sign(®) as in equation (17).

=((g(1,cr)+a-sign((D,=0))K+Vg(1,a)-%]|v¢| an

. {+1 object region
sign(®, ) = .

-1 backgroundregion
The term awsign(®) controls to keep the interface not
getting out of the estimated position. That is, by adding the
characterisic that the interface moves to the estimated
position in the occluded regions, we solve the occlusion
problem to some extent. If the value of o is large, the
interface is easy to be fitted toward the initial gradient
image. Otherwise, it is likely to be fitted toward the given
probability map.

3. Experimental Results

We carried out expriments using various image sqeunces
with object flexibility, background variation, and occlusion.
Fig. 3 shows the procedures for tracking a car. Fig. 3 (a) is
the initial deformed tempate. Fig. 3 (b) is the result of
estimating the object position using the energy function and
affine transform. Fig. 3 (c) is the probability map used to
refine the exact object shape in the refinement process.
Finally, Fig. 3 (d) is the final result of object tracking,.

We have also analyzed the performace of the proposed
algorithm compared with the other existing algorithms. The
performance have been compared in terms of accuracy,
background variation, object flexibility, occlusion, and
error accumulation,
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(c) Probability map for object (d) Final result of tracking
refinement
Fig. 3. Procedures for tracking a car

Fig. 4 shows car sequence with occlusion. As shown in Fig.
4, the tracking result is robust against various occlusions.

o SR et

Fig. 4. Tracking results against various occlusions

We test the proposed tracking algorithm on various
sequences as shown in Fig S5(a)~(c). In Fig. 5 (a), the
sequence has a complex background variation, but the
proposed algorithm shows a good tracking performace.

(¢) a walking man on the block
Fig. 3. Tracking results for various sequences

Table 1 summarizes the perforrnance comparison in term of
accuracy, background variation, object flexibility, occlusion,
and error accumulation.

Table 1. Performance comparison

The proposed | N. Paragios’s | Deformable
method method template
Accuracy Good Very good Poor
Tracking with
background Succeed Fail Succeed
variation
Tracking with .
object Succeed Succeed l:s’:::éz"c){
flexibility ©
Trackmg with Succeed Fail Succeed
occlusion
Error . Relatively None Relatively
accumulation more less

4. Conclusion

In this paper, we propose a tracking algorithm which is
robust against background variation, object flexibility, and
occlusion. We design a potential difference energy function
used in the estimation and refinement of object boundary.
We also use the affine transform and Level Set theory to
improve the peformance.

Experimental results show that the proposed tracking
algorithm is more effective than other existing methods in
terms of accuracy, background variation, object flexibility,
occlusion, and error accumulation.

Future research includes the improvement of execution
time and solving the problem of template re-initialization.
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