Implementation of Rijndael Block Cipher Algorithm

YunKyung Lee, YoungSoo Park

ETRf(Electronics and Telecommunications Research Institute)

161 Gajeong-dong, Yuseong-gu, Dagejeon, 305-350 KOREA

e-mail : neohappy@etri.re.kr, yspark@etri.re kr

Abstract : This paper presents the design of Rijndael
crypto-processor with 128 bits, 192 bits and 256 bits key
size. In October 2000 Rijndael cryptographic algorithm is
selected as AES(Advanced Encryption Standard) by
NIST(National Institute of Standards and Technology).
Rijndael algorithm is strong in any known attacks. And it
can be efficiently implemented in both hardware and
software. We implement Rijndael algorithm in hardware,
because hardware implementation gives more fast
encryption/decryption speed and more physically secure.
We implemented Rijndael algorithm for 128 bits, 192 bits
and 256 bits key size with VHDL, synthesized with
Synopsys, and simulated with ModelSim.

This crypto-processor is implemented using on-the-~fly
key generation method and using lookup table for S-
box/SI-box. And the order of Inverse Shift Row operation
and Inverse Substitution operation is exchanged in
decryption round operation of Rijndael algorithm. It brings
about decrease of the total gate count.

Crypto-processor implemented in these methods is

applied to mobile systems and smart cards, because it has

moderate gate count and high speed.

1. Introduction
Rijndael algorithm is a block cipher performing
encryption and decryption for 128 bits input data and
private key cipher which uses same key in data encryption
and data decryption. It also called AES-128, AES-192 and
AES-256 for used cipher key size. Each is 128 bits, 192
bits and 256 bits key size. And iterated round number

varies as used key size. Table 1 shows the number of

rounds as a function of key size[1].

Table 1. Number of Rounds as a function of key size.

Key length 128 bits 192 bits 256 bits
Round 10 rounds 12 rounds 14 rounds
number

Hardware implementation of Rijndael algorithm gives
the faster data encryption and decryption time and the
higher security than software implementation[2]. It is
important in hardware implementation that each module of
round operation is implemented faster, because data
encryption and decryption is completed after specific
number of round iteration in Rijndael algorithm.

This paper presents implemented Rijndael processor
structure of moderate gate count and high speed. In the
following clause, general Rijndael algorithm is described
and then characteristic of implemented Rijndael processor

is described. Finally, the synthesized results are presented.

2. Rijndael Algorithm

Rijndael algorithm is a block cipher executing data
encryption and data decryption with 128 bits, 192 bits and
256 bits cipher key. Encrypted and decrypted data is
generated after each 10 rounds, 12 rounds and 14 rounds
operation for 128 bits, 192 bits, 256 bits key size.

Encryption round is made up of Substitution, Shift
Rows, MixColumn and Add Round Key operation.
Substitution operation is a non-linear byte mapping
operation and S-box is used. Shift Rows operation is byte

shift operation per row (state(basic operation unit of

ITC-CSCC 2002

Rijndael algorithm) is 4 rows matrix form, and column
based operation is performed, usually.). MixColumn
operation is matrix multiplication that columns are
multiplied by specific constants. Add Round Key operation
is XORing of MixColumn result data and round keys.
Decryption round is invesse of encryption round and
is consist of Inverse Shift Rows, Inverse Substitution, Add
Round Key and Inverse MixColumn. Inverse Shift Rows
operation is byte shift operaticn per row reversly. Inverse
apon-linear byte mapping

operation using SI-box, which is inverse of S-box. Inverse

Substitution operation is
MixColumn operation is matrix multiplication that
columns are multiplied by specific constants which is
inversion of constants used inz MixColumn operation in

GF(2%). Figure 1 shows thg flow chart of Rijndael

algorithm.
ﬂl«yhzru] I | in_data{127:0}
1 DY
J Add Rnd Key |
S —— VTM ‘
] |
| i .
i i
) i Substitution/inv_jubstitution
{ Shift Row / inv,Shift Row |
.
f B «+— mode
{ : e
|
JRO——— | [
L ! ‘
! Mixcol) ’ Add Rnd K ‘
| ixcolumn nd Key ,
L l ; |

I i
L Add Rnd Key J 1

|
L_;l_.i;f;

Aa—— mode

: |
nv_Mixcolumn H

N-r,_

= tinaf round0| 2 round cutputi add round key 61| 1Y USE B3]
round operation @UDUA add round ke

— moda = 0 : round number is even
=1 :round numbasr is odd

Figure 1. Flow Chan of Rijndael Algorithm
First round of Rijndael algorithm performs only Add
Round Key operation. And Final round performs three
operations except MixCofumm(or Inverse MixColumn).
Oter rounds perform all four op¢rations.
S-box used in Substitution operation is gained as
follows.

1. Take the multiplicistive inverse in the finite

field GF(2%) ; Assume that multiplicative

inverse of ‘0’ is ‘0.

2. Apply an Affine transform

SI-box used in Inverse Substitution operation is the
inverse of S-box, which is gained by applying Inverse
Affine transform followed by taking the multiplicative
inverse in the finite field GF(2%)[1]. Figure 2 shows the
matrix form of Affine transform. bi{ 0 < i < 7) is

polynomial expression of 1 byte input value. And b7 is

MSB(Most Significant Bit) and b0 is LSB(Least
Significant Bit).
. 7
b0 10001 1 1 1)(b0 1
b1’ 110001 1 1)|bl 1
b2' 111000 1 1}|b2 0
b3' 111000 1}}b3 0
ba' |1 1 11100 0/{bd| *]0
b5' 0t t 1 110 0]Ibd 1
b6’ 0011111 0]|b6 1
(D7 \0 001 1 1 1 1Lb7) 0

Figure 2. Affine Transform
Inverse Affine transform is inverse transformation of
Affine transform. XORing of Input value and
‘63’(hexadecimal value) followed by multiplication with
inverse matrix used in Affine transform. Figure 3 shows the

Inverse Affine transform.

o) (0010010 1Y /(b0) (1
b 10010010 bt | |1
b2 01001001 b2 | |0
63| =1 0100100 b3 |0
b4 01010010 b4 | *|0
b5 00101001 b5 | |1
b6 10010100 b6' | |1
o7, oot oro)\ler) (o

Figure 3. Inverse Affine Transform

3. Implemented Rijndael processor
structure

3.1. Round Operation
Round operation is consist of Substitution, Shift Rows,

MixColumn and Add Round Key as previous description.

ITC-CSCC 2002

Each Shift Rows and Inverse Shift Rows modules needs
four 32 bits shift registers. First 32 bits shift register used
in Shift Rows is simple register, second 32 bits shift
register is 1 byte rotate shift left register, third shift left
register is 2 byte rotate shift left register and final shift left
register is 3 byte rotate shift left register. And in inverse
Shift Rows module, first shift register is simple register too,
second shift register is 3 byte rotate shift left register, third
register is 2 byte shift left register, and final register is 1
byte shift left register. So first and third register can be
shared in encryption mode and decryption mode.

S-box used in encryption mode of Rijndael algorithm is
obtained by taking multiplicative inverse in finite field
GF(2%) followed by affine transform. And SI-box used in
decryption mode is obtained by inverse affine transform
followed by taking multiplicative inverse in finite field
GF(2%). If S-box and Sl-box is obtained by using
combinational logic, then it needs multiplicative inverse
calculation module. It’s hardware implementation is
difficult and it decreases the effect of hardware
implementation, i.e. high speed. So we implemented S-box
and SI-box using lookup table. The synthesis result of S-
box implemented using lookup table is about 500 gates and
it is acceptable.

For reusable implementation of encryption and decrytion
module, we implemented decryption round in exchanged
order of Inverse Substitution and Inverse Shift Rows.
These two operations perform transformations per byte, so
it is not affect to the decryption result. Data processing unit
of each round operation is 128 bits which is basic data
processing unit of the Rijndael algorithm. It results in no

supplementary register use, and no increasing of gate count

and data processing time.

3.2. Round Key Generation

Different round key is needed per round operation. Two
round key generation methods exist. The one is that round
key is generated before encryption or decryption start and

stored in registers. It needs supplementary register about

128 * (total round number + 1) bits , key protection method
for external attack, and round key generation time. Another
method is on-the-fly key generation method, which
generates round key during other round operation. Round
key is used only in Add Round Key operation which is last
operation of round operations. And round key generation
time is smaller than the execution time of the other round
operations. So on-the-fly key generation is not an
increasing factor of total encryption or decryption time.

In AES-192(192 bits key Rijndael algorithm) and AES-
256(256 bits key Rijndael algorithm), data processing unit
of round operation is 128 bits, too. The round operation
structure is the same as it of AES-128. but key generation
mechanism is different each other. Supplementary registers

and additional key control are needed. Three types of round

" key control method applied to each round key generation in

AES-192 and two types of round key control method
applied to each round key generation in AES-256.

4. Implementation Results
We implemented Rijndael algorithm for 128 bits, 192

bits and 256 bits key size in previously described methods
using VHDL. And we synthesized using Synopsys. The
synthesized result is that the total gate count of AES-128
and AES-192 encryption and decryption processor is about
40,000 gates, and the total gate count of AES-256
encryption and decryption processor is about 45,000 gates.
Data arrival time is about 600 ns. It is reasonable.

Some modified structure of implemented crypto

processor applied to mobile system and smart card, etc.

5. Conclusions
This paper describes the Rijndael crypto processor
implementation methods for 128 bits, 192 bits and 256 bits
key size, and synthesizing results. Applied key generation
method is on-the-fly key generation method. Unlike AES-
128 implementation, AES-192 implementation and AES-
256 implementation needs supplementary registers and

more delicate key control. Lookup table method is applied

ITC-CSCC 2002

to S-box/SI-box implementation. So we obtained moderate

gate counts and high speed Rijndael crypto processor.

References

[1] Joan Daemen, Vincent Rijmen, “AES Proposal :
Rijndael”

[2] AJ Elbirt, W Yip, B Chetwynd, C Paar, “ An FPGA-
BASED Performance Evaluation of the AES Block
Cipher Candidate Algorithm Finalists,” IEEE Tran. on
VLSI

{31 http://csrc.nist.gov/encryption/aes/

ITC-CSCC 2002

