Dynamic Load Balancing Algorithm using Execution Time

Prediction on Cluster Systems

Wan-Oh Yoon, Jin-Ha Jung, and Sang-Bang Choi
Dept. of Electronic Engineering, Inha University
Yonghyun-dong, Nam-ku, Incheon
402-751, South Korea
Tel:+82-32-860-7417, Fax: +82-32-868-3654 sangbang@inha.ac.kr

Abstract: In recent years, an increasing amount of
computer network research has focused on the problem of
cluster system in order to achieve higher performance and
lower cost. The load unbalance is the major defect that
reduces performance of a cluster system that uses parallel
program in a form of SPMD (Single Program Multiple Data).
Also, the load unbalance is a problem of MPP (Massive

Parallel Processors), and distributed system. The cluster
system is a loosely-coupled distributed system, therefore, it
has higher communication overhead than MPP. Dynamic load
balancing can solve the load unbalance problem of cluster
system and reduce its communication cost.

The cluster systems considered in this paper consist of P
heterogeneous nodes connected by a switch-based network.
The master node can predict the average execution time of
-tasks for each slave node based on the information from the
corresponding slave node. Then, the master node redistributes
remaining tasks to each node considering the predicted
execution time and the communication overhead for task
migration. The proposed dynamic load balancing uses
execution time prediction to optimize the task redistribution.
The various performance factors such as node number, task
number, and communication cost are considered to improve
the performance of cluster system. From the simulation
results, we verified the effectiveness of the proposed dynamic
load balancing algorithm.

1. Introduction

Recently, the introduction of high performance
microprocessor technology and high speed networks
equipment are toward cluster systems which have low
cost and high performance. Some examples of cluster
systems are NOW (Network of Workstations), Beowulf,
HPVM (High Performance Virtual Machine), and
Solaris-MC. Such systems use SPMD (Single Program
Multiple Data) programming style, which enables the
same code to run on several processing nodes while
the data space is partitioned among them. The libraries
such as MPI (Message Passing Interface) and PVM
(Parallel Virtual Machine) are supporting SPMD
programming framework[3].

Nowadays, the cluster system is positioned between
MPP (Massively Parallel Processors) and distributed
systems. The number of nodes for cluster system is
usually about 100, and it's network framework has a

switching topology[1]. Usually, the cluster systems use
Fast Ethernet for low cost but there is tendency for
using ATM, Gigabit Ethenet, Myrinet and SCI network
equipment to accomplish high performance although
expensive cost.

Major defect on performance in the cluster system is
load imbalance like parallel computers have. The
cluster system is similar to loosely-connected MPP
system. So the communication overhead is higher than
MPP. Therefore, it needs more effective load balancing
algorithm which has low communication overhead.

In this paper, cluster system using master-slave is
modeled, and the master node can predict the execution
time of each node based on the information from slave
node. The master node calculates the task, that will be
redistributed to each node on a predicted time and it
considers the communication cost as the task move.
Dynamic Load Balancing uses execution time prediction
to optimize the task redistribution

2. The Cluster system

The cluster system is a type of parallel or distributed
system, which consists of a collection of interconnected
stand-alone computers working together as a single,
integrated computing resource[l]. A computer node can
be a single or multiprocessor system (PCs,
workstations, or SMPs) with memory, /O facilities, and
an operating system.

The Cluster technology permits organizations to boost
their processing power using standard technology
(commodity hardware and software components) that
can be acquired at relative low cost. The cluster
system is a new supercomputing architecture that has
efficiencies such as performance, availability, scalability
and throughput[2].

3. Load Balancing Algorithm

3.1 Network Model

ITC-CSCC 2002

Fig. 1 shows master-siave network model. The parallel

programs simulated follow the master and slave
network model, where a master task generates a
number of slave tasks[2]. Each slave task carries out
some processing and sends result back to the master.
After receiving the results from all the slaves, the
master task will be terminated.

Master Node

Master Nodo

e
—NT—

Blave Nodo Slave Nudo Stave nuda Slave Nede

Slave Node

Fig 1. Master-slave network model

Cluster systems considered in this paper consist of N

heterogeneous nodes and have switch-based network.
The master node is randomly selected among nodes
and has additional jobs which distribute tasks and
gather results from slave nodes, processing own task as
one node. We assume that the communication
architecture of the switch-based network is the one-port
model. The one-port model restricts a node to
exchange messages with at most one node at a time.
We also assume that multicast is not supported in
hardware.

3.2 Dynamic using
Execution Time

First we propose the dynamic load balancing using
predictable execution time without consideration of
communication cost. In order to achieve the dynamic
load balancing, master node has to calculate a task to
move using the load information of slave node. Cluster
system for parallel processing can't use absolute
thresholds induced from CPU queue length, CPU
utilization, and /O wusage which are used in the
existing distributed system. Therefore, cluster system
adopts the number of tasks in the ready queue of each
node as basis for measuring the load[2].

N is the number of task that distributed with the
nodes of the number of P equally. master node per
time ¢; collects the information of task number(;) in

ready queue of each slave node i, i= 1, ---, P. Master
node calculates average time that each slave node

Load Balancing Algorithm

executes a task through the collected information
during period ¢;.
t; .
Tut="N—p: » {=L P M

Ny 1s the total number of tasks on
Then

slave node,

jvtotal= 121 ni (2)

Ideally, in order to get the best performance of
cluster system, all slave nodes should finish the task
simultaneously. Thus, as shown in the following
equation, all slave nodes should be redistributed by
the task in the ratio of the performance of each node.

7 X Ttask1= 79X Ttaskzz =npX Tmsk,. (3)

Solving the above two equations(i.e.,equations 2 & 3),
we can obtain the following formula for #’; :

n'; = fl T *Now > 1= L - P (4
Trask, = Tlask,-
In MPP systems which have high speed

interconnection network, the load balancing cost is low.
However, in cluster system which have expensive
communication cost, we need an effective load
balancing algorithm which has low overhead. In this

paper, #’; is calculated with prediction of total task

execution time (E;) considering communication cost.
We define average task execution time of slave node
that overall numbers of task execution time (T ,.pne.)
are divided by overall number of node. The node
which T,y is bigger then T, is called overloaded

node, and the one which is smaller than T, IS
called underloaded node.

Al slave nodes calculate the communication cost
concened FE; value with increasing the task from
overloaded node to underloaded node achieve the task
quantity calculated from formula 4.

Herewith, the communication cost of task m(bytes)
migration is as following.

C; = delay time + transmission delay
Delay time is the time which need for system to
migrate the task and transmission delay is the network
overhead which takes to migrate the task m(bytes).
Cluster system's total execution time is equal to the
biggest value of each wnode's execution time FE;
therefore node's select is migrating the task from
overloaded node group to wunderloaded node group
(Fig 2). Everytime task migration, each node's FE;
value is recalculated with following formula.
overloaded : E;={(n;—k;) X Tiu,+ k:Cy
underloaded : E;= (n;+ k;) X Thpg, + k;C;

ITC-CSCC 2002

% Gain
'
'
‘
1
'

underloaded group overloaded group

500 1000 2000 3060 Avop 5N0O
Numbar of Task

where, 1< i, j <N and Zkf = Zkl" Fig 4. The gain versus the number of tasks for various
It gives the information on value of E; that is the communication overheads (the number of nodes is 16).

smallest number of F; when all nodes are the same
number of task number in formula 3.

4. Simulations and Implementation

"% Gam

4.1 Simulation and Analysis

In this paper, we studied dynamic load balancing
using a simulation model. We compared general
dynamic load balancing algorithms such as central
dynamic load balancing (CLB), decentral load balancing
(DLB) with our proposed dynamic load balancing
algorithm using execution time and marginal central
dynamic load balancing (MCLB). Existing implemented
cluster systems employ switch topology and the group
nodes by multiple of 2 such as 4, 8, 16, 32, 64, 128
nodes group. Task model in each node uses as
follows[4]. In our simulation model, each node has 200
tasks. But each task execution time has random value.

Execution time of a task ;j of node 7 is #;(7). And

Numberof Task

Fig 5. The gain versus the number of tasks for various

communication overheads (the number of nodes is 32).

% Gain

distribution of #;(7) have a uniform random
distribution with the range, 0 < 7;(2) < 27;(3). 7;(2)

is average task execution time in node 7. 7;(7) is

s ot
Number of Task

distributed in the range, 0 < 7j (Z) < 2E(7). E(7’) is Fig 6. The gain versus the number of tasks for various
average task execution time in all node. We varied communication overheads (the number of nodes is 64).
Comse from 1% of E(#) to 5% of E(7). Cpgy (one

task migration time) is set into 10 times of C,,

1) wroster modo

Gain{%)

Communication Cost{%}

E el N e
B =S o e ot Fig 7. The comparison of gains obtained from four algorithms
Fig 3. An example of the network configuration - (the number of nodes is32)

(the number of nodes is 32)
Cus 1s a data segment -movement time. So the

ITC-CSCC 2002

overhead is large. Fig. 3 is an example of network
configuration. Fig. 4~6 show simulation results in
network consisting of 16, 32, and 64 nodes. The gain,
G, is the ratio of total execution time in no load
balancing to total execution time in load balancing.

E TNOLB —F TLB
ET1p

ETyorg = Execution ime without load balancing

G:

ET, g = Execution time with load balancing

Fig. 7 shows to make a comparison between gain rate
of proposed algorithm and one of other algorithms.

4.2 Implementation

In this paper, we implements a linux cluster system
to evaluate performance of proposed load balancing
algorithm. It measures the performance using Netpipe
(Network Protocol Independent Performance
Evaluator)[6] that evaluate the performance of network
protocol and NPB (NAS Parallel Benchmark).
Maximum bandwidth in experiment is about 7.8Mbps
which is unreached to the maximum values 10Mbps in
theory (Fig 8 and 9). Therefore, the data transfer time

C, from benchmarking
Ci= 242+ 235x m(byte/ usec). This value is average
one from many tests.

To apply the algorithm proposed in this paper, we
need parallel program model. We obtain gain rate by

test is

Handwidil{Mte /)

Message Size(Kbyte}

Fig 8. The value of bandwidth by the Netpipe

Time(sec)

Maasage SizefKbyta)

Fig 9. The message transfer time of point-to-point communication
by the Netpipe

Size o; X_MAX
Fig 10. The gain from the proposed algorithm

applying heat conduction model with
algorithm. It's about 5.6% gain rates (Fig 10).

proposed

5. Conclusions

In this paper, the proposed dynamic load balancing
uses execution time prediction to optimize the task
redistribution. The various performance factors such as
number of nodes, number of tasks and communication
cost are considered to improve the performance of
cluster system. From the simulation results, we verified
the effectiveness of the proposed dynamic load
balancing algorithm. We implemented four node
Beowulf cluster system to find the speedup from the
cluster system implemented using the algorithm
proposed in this paper. The performance of the
implemented cluster system is measured using Netpipe
benchmark program for network performance evaluation
and NPB benchmark program to measure the
computing capability of cluster system. The network
bandwidth measured in the real execution of Netpipe
program is less than the value obtained from the
simulations in the 10Mbps Ethernet environment. We
also run the heat conduction model using the
implemented cluster system to evaluate the performance
of the proposed algorithm and achieved the remarkable
performance improvement.

References

[1] Rajkumar Buyya, "High Performance Cluster Com-
puting Volume 1 - Architectures and Systems”

[2] M. Cermele, M. Colajanni, and G. Necci,
"Dynamic Load Balancing of Distributed SPMD
Computations with Explicit Message-Passing,"
IEEE97, ISSN:0-8186-7879-8/97 .

[3] Wentong Cai, Bu-Sung Lee, Alfred Heng, and Li
Zhu "A Simulation Study of Dynamic Load
Balancing for Network-based Parallel Processing,”
IEEE 1997, ISSN : 1087-4089/97

[4] Marc H. Willebeek-LeMair, and Anthony P.
Reeves, "Starategies for Dynamic Load Balancing
on Highly Parallel Computers,” IEEE Transactions
on Parallel and Distibuted Systems, Vol 4, No. 9

{S] Niranjan G. Shivaratri, Philip Krueger, and Mukesh
Singhal, "Load Distributing for Locally Distributed
Systems,” IEEE Computer, Vol 25, No. 12, Dec.
1992.

[6] Netpipe, http://www.scl.ameslab.gov/netpipe.

[7] mpi, http://Www.-unix.mcs.anl.gov/mpi/

ITC-CSCC 2002

