3-D Inverse Radon Transform by Use of Tree-Structured Filter Bank

Yoshitaka MORIKAWA' and Junichi MURAKAMI’
! Department of Communication Network Engincering,
Faculty of Engineering, Okayama University,
3-1-2 Tsusimanaka, Okayama-city,Okayama 700-8530, Japan
Tel. +86-251-8126, Fax.: +86-251-8127
e-mail :morikawa@cne.okayama-u.ac.jp
? Department of Control Engineering, Takuma National College of Technology,
551 Kouda, Takuma-cho, Mitoyo-gun, Kagawa, 769-1192, Japan

Abstract: Two-dimensional (2-D) X-ray computerized
tomography (CT) equipments are widely used in industrial
and medical ficlds, and nowadays studies on reconstruction
algorithm for 3-D cone-beam acquisition systems are active
for better utilization. The authors recent-ly have proposed a
fast reconstruction aigorithm using tree-structured filrer
bank tor 2- C1i, and shown the algorithm 1s applicable to
an approximate reconstruction of 3-D CT. For exact 3-D
't reconstruction, however, we have to backproject {-D
signal into 3-D space. fhis paper proposes a tast
implementation method for this back-projection by use of
tree-structured filter bank. and shows the proposed method
works approximately 700 times faster than the direct one
with almost same reconstruction image quality.

1. Introduction

Two-dimensional (2-D) X-ray computerized tomography
(CT) equipments are widely spread in industrial and medi-
cal fields, and nowadays studies on reconstruction algo-
rithm for 3-D cone-beam acquisition system are active for
more usefulness [1]. For real time observation by X-ray CT,
a fast reconstruction algorithm is inevitablv required in both
conventional fan-beam CT and cone-beam CT.

The authors recently have proposed a fast algorithm for
2-D CT using tree-structured filter bank [2]. Feldkamp et al.
[3] dealt with 3-D cone-beam acquisition system and pro-
posed an approximation reconstruction method using a
rebinning and the existing fan-beam reconstruction algo-
rithm. The authors have also shown [4] the new algorithm
is applicable to the Feldkamp method.  On the other hand,
for 3-D CT Grangeat [S] showed that the reprojection of
measured 2-D signal coincides with the derivative of the
well-known Radon transform [6], and proposed an exact 3-
D reconstruction algorithm for cone-beam acquisition sys-
tem. His algorithm, however, requires backprojection into
3-D space, and this processing takes so much time. This
paper proposes a fast implementation method for this back-
projection by use of tree-structured filter bank, and shows
the proposed method works approximately 700 times faster
than the direct one with almost same reconstruction image
quality. Bamberger et al. were aware of filter bank appli-
cation to CT {8], but since their bank was under critical
sampling they did not succeed in the CT reconstruction
owing to holding distortion.

In what follows, we first review the relation of cone-
beam CT to Radon transform in 3-D space, and then

describe the similarity between processings of the back-
projection and of synthesis in 2-D subband system. In the
third place, we describe our proposed algorithm for 3-D
backprojection, and evaluate the efficiency and recon-
struction image quality of our algorithm comparing to the
direct method.

2. Relation of Cone-beam U1 to
Radon Transform
Radon transtorm of a 3-L tunction f(r)(reR”)1s de-
fined [6] as

F(1,8)= j j' f Fr)S(t-8-r)dr, (N

where 5(f) denotes the 1-D Dirac delta function, 8 the 3-D
vector limited on the unit sphere and 0 -r shows the vector
inner product. Inverse Radon transform corresponding to
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Fig.! lilustration of Inverse Radon Transform

Eq.(1) becomes [6]
f= j{—d-im,e)} a8 @
18j=1 dt r=r8

where [-],_, shows the substitution of ¢ by s and {f-46 the .

integration over the unit sphere. Fig.l shows the inter-
pretation to the inverse Radon transform of Eq.(2). For the
given Radon transform F(z,0) we first take the second
derivative of the transform in respect to ¢ and secondly
backproject the derivative values onto the plane 6-r
=t for each @ and ¢, and in the last sum up the back-
projected values of all @ ateveryr.

ITC-CSCC 2002



In cone-beam acquisition system, corresponding to a posi-
tion of X-ray source we get a 2-D image on the opposite
opposite face of the object. Grangeat showed that the first
derivative of Radon transform coincides with reprojection
of the observed image [5]. Therefore, from Eq.(2) we see
that reconstruction can be carried out by taking once more
the derivative of the reprojected data and backprojecting the
values over the plane 0-r =¢. For realization of this
method, we must device a fast algorithm for the 3-D back-
projection in Eq.(2).

3. Filter Bank Method for Backprojection
For simplicity of describing filter bank method, we re-
strict our discussion to two dimensions in this section.

n
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Fig.2 Responses of 2-D Narrow Bandpass Filter

At first, let us consider a very narrow 2-D bandpass filter
having the frequency response shown by Fig.2(a). From the
delta function property of the Fourier transform pair, the
impulse response of the bandpass filter will become the one
shown in Fig.2(b). Therefore, when applying this filter to
the signal x(n,, n,) such that x(ny, n,)=0 for n,#0, the
nonzero values on the #, axis will be copied out along the
direction of the impulse response, resulting in backpro-
jection. When a 2-D signal is given over the lattice points
on every horizontal line, each separated by K in the »;
direction, and well correlated in the direction declined
by @ to the n, axis, the above filter yields the interpolation
in the @ direction by the factor X. Since the separating
lattice points between the valid horizontal lines are not
known in the beginning, we at first allot the zeros to these
separating points (upsampling) and then make the filtering
with the corresponding directional bandpass filter.

Fig.3(a) shows the passbands of K directional filters
necessary for synthesis of the angular range of -z/4<
6 < z/4. Their passbands overlap each other near the origin
but exclude on the edges at wy== . Fig.3(b), where n and
z respectively are the vector notations of lattice points and
the Z variables, shows the block diagram of implementation
of backprojection using synthesis bank for the range -»/4
<@ <x/4. All signals to be synthesized are upsampled by the
factor X in the n; direction, followed by filtering with the
corresponding directional filters, and then summed up to
give the synthesis signal. Since Fig.3 demonstrates the
synthesis for the range —z/4 <6 <z/4 only, in order to fully
reconstruct the CT slice we have to carry out the same
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Fig.3 Illustration for Synthesis Bank for Backprojections

processing for the angular range z/4<8<3z/4 with ex-
changing »; and n,, and add the resultant signal to that of
-rf4<0<x/4.

The above processing is eventually a kind of synthesis
bank in subband system [7]. When K is a power of 2, we
can de-compose those directional filters into tree-structure.
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Fig.4 Tree Structure of 2-D Directional Bandpass Filter

Fig.4, which illustrates the passband of each filter, shows
the tree- structure for the synthesis of the angular range
0<@<x/4 in the case of K=8. Since the common
processing is executed in one time in the tree-structure, it
accelerates the processing speed by the factor K/log,K
comparing to the direct backprojection method [4]. In this
bank, the variable parallelogram filter B.(zp,2) works as
synthesis filter [2]. Fi(zp,2;) are given by

P(z0s2) = .;—(1 + 23002y (20U (zkz)) sk =0dd, (3a)

where the unit filter U(z) is expressed in terms of the allpass
filter A(2);

1 1+az”
U(z )=5(2A(z>+,;(z~l>) sA(z)= ff;

,a=05_ (3b)

This parallelogram filter can attain approximately 40dB
stopband attenuation. It is noted that anticausal operations

ITC-CSCC 2002



in the above expression may be executed by time reversal
{71 for finite size 2-D signal such as a CT slice.

4. Filter Bank Method for Backprojection

3-D backprojection requires 3-D narrow bandpass
directional filters.

Fig.5(a) shows the implementation of such a filter in the
Fourier domain. First, we apply the 2-D directional filter as
shown in (b) in the @~ plane and then in the @, -
@, plane, where the 2-D directional filters are realized in
Section 3. By this direct product implementation, the re-
sulting 3-D passband becomes their intersection as shown
by the gray slab in (a). The end of this slab moves on the
face parallel io the @ —@, plane of the cube in {a)
according as the directions of the both 2-D parallelogram
filters change. The 3-D filter shown in Fig.5(a) acts on the
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Fig.5 Direct Product Implementation of 3-D Directional Filter

3-D input at the lattice points shown by the circle in Fig.6.
Specifically the second derivatives of the Radon transform
is at first backprojected and interpolated at the lattice points
separated by K in the n; and n, directions. We call this
processing sub-projection. Then, using the 3-D directional
filter, we interpolate another lattice points between the
known samples. This interpolation is carried out in two
steps; the first is the interpolations with the 7, —n, coordi-
nates in the two planes indicated by dark parallelograms in
Fig.6, and the second the interpolations with the r, —#. co-
ordinates in the planes perpendicular to the dark paralielo-
gram. The former interpolations are done only for the N/K
planes, but the latter for N planes, where N is the size of
reconstructed 3-D image. To all the interpolations done in
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Fig.6 Initially Given Data Points and Backprojection

plane we apply the algorithm using tree-structured filter

bank mentioned in Section 3.
The above processing can be carried out for the interpo-
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Fig.7 Direction Cones

lations of the directions included in the cone-0 shown in
Fig.7(a). For full reconstruction using ali direction data, we
must carry out the same processing for another directions
included in cone-! and cone-2 shown in (b) and (c),
respectively. The three interpolated 3-D signals are added
together 1o get the objective 3-D reconsirucied image.

5. Complexity
Suppose the size of 3-D image to be reconstructed NxN
x N pixels and the number of directions per a square cone
K*= (N/ £) 2. The number of multiplications in the direct
backprojection method is given by

N3
K J K

Now, let us consider for the tree-structured filter bank
(TSFB) method. First, the number of multiplications for the
sub-projections is given by

3K° x(%} N =3N%. 3)

In the second place, since the total number of repetitions of
plane interpolation is 3 X (N+K X N/K)=6N and since the
number of multiplications per one plane interpolation is
3Nlog,K [2], the number of multiplications for TSFB
interpolation is given by

3N log, K x6N = 18N log, .. ©)
K

The total number of multiplications is given by sum of
Eq.(4) and (5).

#1ops = 3N 3(] +6log, —IX) M
K

Since we usually select £ = 4, #;4p is considered to be

proportional to N’ but N°. Therefore TSFB is much faster
than the direct method. Moreover TSFB method has the
property that memory access occurs often in consecutive
addresses, and therefore processors with cache can execute
TSFB in pipeline manner. In addition, since multiplication
constant a in the allpass filter Eq.(3) is equal to 1/2, even if
fixed point arithmetic is used instead of floating, the
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reconstruction distortion may not increase so much.

5. Simulations

We conducted reconstruction simulations of TSFB and
the direct methods. We used a 3-D phantom of NXNXN
pixels composed of many elliptic bodies, and simulations
were performed on Pentium 1T (800MHz) processor using
“C” language that does not support the STREAM-SIMD.

£ =4 was supposed in TSFB method.
Table 1 compares the processing time. From the table

Table 1 Comparison of Processing time

N Direct TSFB (Direlz?;irosms)
32 A6[sec] | 0.29[sec] , 17
64 2 8fmin] 26fsec] | 64
128 0| 1.5fhour] i 232fsech ! 232
256 L 20(day} | 38fmin} | 759

we see that the proposed method works approximately 700
rimes faster than the direct method for the usual image size
N=256 and the ratio increases approximately as propor-
tional as N°.

Fig.8 compares the reconstructed images at the position
z=-0.25, where the size of the phantom is normalized so
that vhe f{x,y,z)=0 for {xi,vi,iz{>1. We see the image qualities
of the direct and TSFB method are almost same. Peak
signal-to-noise ratic (PSNR) is a little bit lower for TSFB
method. This error is due to the poor termination processing
of the allpass filter at the rim of the image. Nevertheless we
can conclude TSFB is practically valuable.

6. Conclusion

In this paper we have proposed a fast implementation
method for 3-D inverse Radon transform by use of tree-
structured filter bank (TSFB). Inverse Radon transform is
important especially in 3-D cone-beam CT. We have shown
the proposed method works approximately 700 times faster
than the direct one with almost same reconstruction
distortion for usnal image size.

Future work will be to install TSFB into Grangeat
method and to devise a clever termination method of the
allpass filter.

References

[1] C. Axelsson-Jacobson, R. Guillemaud, P.E. Danielsson, P.
Grangeat, M. Defrise, and R. Clack, “ Comparison of Three 3D
Reconstruction Methods from Cone-Beam Data,” in P. Grangeat
and J. Amans (ed.), Three-Dimensional Image Reconstruction in
Radiology and Nuclear Medicine, pp.3-19, Kluwer Academic
Publishers, 1996.

[2] J. Murakami, K. Mizowaki, and Y. Merikawa, “Reconstruc-
tion Algorithm for CT Using Tree-Structured Filter Bank,”
IEICE Trans. D-II, vol.J84-D-I1, no.3, pp.580-589, March 2001.

[3] L.A. Feldkamp, L.C. Davis, and J.W. Kress, “Practical Cone-
Beam Algorithm,” Journal of Optical Society America A, vol.1,
10.6, pp.612-619, 1984.

(a) Direct Method (PSNR=26.4dB)

{b) TSFB Method (PSNR=25.9dB)

Fig.8 Comparison of Reconstructed Image Quality

[4] 3. Murakami, K. Mizowaki, and Y Morikawa, “Reconstruc-
tion Algorithm for Helical CT Using Tree-Structured Filter
Bank,” Proc. of the 2001 Int. Tech. Conf. on Circ./Sys, Comp.
and Communications, vol.2, pp.1095-1098, July 2001.

[51 P. Grangeat, “Mathematical framework of cone beam 3D
reconstruction via the first derivative of the Radon transform,”
in G.T. Herman, A.K. Louis and F. Natterer (ed.), Mathemati-
cal Methods in Tomography, Lecture Notes in Mathematics,
vol. 1497, pp.66-97, Springer, 1991.

[6] S.R. Deans, The Radon Transform and Some of lts App-
lications, Reprint ed. Krieger Publishing, 1993.

{7] PP. Vaidyanathan, Multirate Systems and Filter Banks,
Prentice Hall, 1993.

[8] R.H. Bamberger, and M.J.T. Smith, “A Filter Bank for the
Directional Decomposition of Images: Theory and Design,”
IEEE Trans. Signal Process., vol.40, no.4, pp.882-893,1992.

ITC-CSCC 2002



