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Abstract: The current paper proposes a new multispectral
image data compression algorithm that can efficiently
reduce spatial and spectral redundancies by applying
classified prediction, a Karhunen-Loeve transform (KLT),
and the three-dimensional set partitioning in hierarchical
trees (3-D SPIHT) algorithm in the wavelet transform (WT)
domain. The classification is performed in the WT domain
to exploit the interband classified dependency, while the
resulting class information is used for the interband
prediction. The residual image data on the prediction errors
between the original image data and the predicted image
data is decorrelated by a KLT. Finally, the 3D-SPIHT
algorithm is used to encode the transformed coefficients
listed in a descending order spatially and spectrally as a
result of the WT and KLT. Simulation results showed that
the reconstructed images after using the proposed algorithm
exhibited a better quality and higher compression ratio than
those using conventional algorithms.

1. Introduction

Some of the important applications of multispectral images
include environmental assessment and monitoring, geology,
agriculture, military surveillance, and natural resource
management. A single multispectral image collected by the
Landsat TM sensor has seven different bands and the
volume of this data increases when multispectral images
have a better spatial and spectral resolution. Therefore,
efficient compression of such a large volume of multi-
spectral image data is required for available communication
channels and storage capacities. Multispectral images
include both spatial and spectral redundancies. A number of
techniques have already been proposed to reduce spatial and
spectral redundancies and can be roughly classified into
three types: (1) vector quantization (VQ), (2) prediction,
and (3) transform coding, such as a WT, discrete cosine
transform (DCT), and KLT. Recent papers on multispectral
image data compression have applied these techniques.

Gupta et al.!! proposed the use of VQ to reduce spatial
redundancies using spatial blocks, and nonlinear block
prediction to reduce spectral redundancies. Yet multispec-
tral images are characterized by highly nonlinear depend-
encies. As such, this algorithm is not optimal due to
incorrectness resulting from block prediction without
classification.

Gelli et al.™ carried out a pixel-by-pixel classification
based on VQ to efficiently exploit the linear and nonlinear

dependencies among the image bands. After the classifica-
tion step, the spectral and spatial redundancies are exploited
by performing a KLT in the spectral domain and DCT in the
spatial domain. However, a lot of side class information has
to be encoded after the pixel-by-pixel classification in the
spatial domain.

Dragotti et al® used a WT to reduce the spatial
redundancies and KL T to reduce the spectral redundancies.
The coefficients are first decorrelated spatially and spec-
trally and then encoded using the 3-D SPIHT algorithm 1
However, this algorithm does not comsider classified
interband dependency and the KLT is only used to reduce
the interband redundancy in the WT domain.

Accordingly, a new multispectral image data compres-
sion algorithm is proposed that can efficiently reduce both
spatial and spectral redundancies. A block diagram of the
proposed algorithm is shown in Fig. 1. The feature band
resulting from a WT is first encoded by the 2D-SPIHT
algorithm. Then, all the other bands, except for the feature
band, are predicted using a prediction. In other words, a WT
is used to reduce the redundancies in the spatial domain,
while classified prediction and a KLT are used to reduce the
redundancies in the spectral domain. Finally, the trans-
formed coefficients listed in a descending order spatially
and spectrally are encoded by the 3D-SPIHT algorithm.
Simulation results using Landsat TM image data confirmed
the improved quality of the proposed algorithm as regards
the average PSNR at an equal bit rate.

2. Proposed Algorithm

2.1 WT and Feature Band Selection
The multispectral image data X is represented as

X={X11X2’X3:"':Xn} (1)
where the subscript » denotes the number of bands, »
equals seven in the case of Landsat TM, X;, X,, and X,
represent images in the visible spectral region, and
X,, X5, X4, and X7 represent images in the infrared
spectral region. Plus, X, is a thermal band with a different
spatial resolution, which is considered separately. The

multispectral image data W after a WT is represented as

W={VVl’ WZ’ PVS: "'7Wn} (2)
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Fig. 1. Block diagram of proposed algorithm.

and the wavelet coefficient vector W’(i,j) with the same
spectral location (i, /) of subband b is represented as

wWoGi, ) =1 WG, ), Wa i, 1)y, WEGi ) ] A3)

where 0<b<12 in the case of a four-level WT. Fig. 2
shows that the wavelet coefficient vector in the baseband
can be represented as

WO /) =L W@, ) W), wa i) ] @)

The selected feature band should have a low spatial
variance and high correlation with the other bands.
Therefore, after calculating the spatial variance and
interband correlation in the baseband, band 2 was selected
as the feature band. The selected feature band 2 was then
encoded using the 2-D SPIHT algorithm in order to predict
the other bands.

2.2 Classification in WT Domain

Multispectral image data in the WT domain has an energy

wl(i,j)
wo (lj

W°(tj)

Wi, j)

Baseband n W ,(.)

Baseband 2 W(z)
Baseband 1 W‘,’

Fig. 2. Wavelet coefficient vector W°(;, /) in baseband.

Fig. 3. Extension of class information in baseband to other
subbands.

concentration in the baseband, and the wavelet coefficient

vector WP°(i,j) has different values according to the
reflective characteristics of various regions. Thus, typical
values can be obtained to classify regions using the
generalized Lloyd method and these values then used as
reference values for classification. The classification is
arranged into classes that minimize the difference value
between an input vector and the reference values. The class
decision that assigns a wavelet coefficient vector into one of
four regions is shown as

C=arg{min(Z|Wk Class,,l Z|Wk Classkl,

k=1

ZIW" Classkl ZIW" CIassk| H

®

where Class, denotes a typical value for class 1 in the & -th
band. The class information is then extended to other
subbands by considering the spatial correlation and
resolution, as shown in Fig. 3.

2.3 Classified Interband Prediction

The interband prediction using prediction coefficients is
carried out for the other bands, except for feature band 2.
Those wavelet coefficients that belong to the same class
have the same interband linear dependency. In other words,
the predicted value W?(c) can be represented by the

prediction coefficients A%(c) and B’ (c) .

W le)= A2(c) W2 s(c)+ Bo(c) (6)
b

2= COV (W, (c), Wi (c)) ™
VAR (c))

Bi(c)=EW: (0))- A5 (c)- (B2 ()] (8)

where subscript p and ref indicate the predicted band and

feature band,
subband, ¢

respectively, superscript b denotes the
represents the class information, and
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E[-], COV(-), and VAR(-) represent the expectation, covari-
ance, and variance, respectively. The fixed prediction
coefficients are calculated using various waining images.
When compared to the method that uses a self-image, the
selection of fixed prediction coefficients in the proposed

method has the advantage that no side information is needed.

2.4 Residual Image Data Encoding

The feature band image data encoded after the 2D SPIHT
and predicied band image data both include errors when
compared with the original image data. However, since this
error image data still has an interband correlation, a speciral
KLT" js carmied out to decorrelate the transformed
coefficients, thereby reducing the spectral redundancies.
The KLT is actually carried out subband-to-subband, rather
than band-to-band. The number of the nxn covariance
marix is equivalent to that of the subbands in one band.

The wavelet coefficients vectors W with n bands can be
expressed as

W=[Wl,Wz,"‘,W" }T (9)

where w; is the component of the i -th band of the wavelet

coefficients vectors W and [-} denotes the transpose. The
band-to-band covariance matrix is defined as

M-
Gy =L (07 - w07 - 1,71
k=0

Y, (10)

where M represents the number of the wavelet coefficients
vecotors and the mean vector My, is

M-

M, = %Zﬁ w (11)
The transformation matrix T is represented as

T=[e,e,e] (12)
where ¢, ~e, are eigenvectors of C, and the wavelet

coefficients vectors W are trasformed by this transfor-
mation matrix 7. The transformed Y vectors are
represented as

(13)

Y=TW =[y, 9, y,]

where y;, yy, -
matrix of ¥ is

40 -0
04 -0

Cy =TC, T =| 2? : (14)
002,

, ¥, are decorrelated, since the covariance

where 4,24, 2--- 21,

As a result of the KLT, the coefficients are listed
specually in a descending order of their eigenvalue
magnitude. As a result of the WT and KLT, the significant
coefficients are usually concentrated spatially in the upper
levels of the trees and spectrally in the first band. This
sorting result allows the 3-D SPIHT algorithm to encode the
coefficients efficiently.

3. Experimental Results

In the experiments, Area-P Landsat TM images, including
seven-band multispectral data with a size of 512 x 400
pixels with eight bits per pixel, were used. Bands 1-5 and
band 7 had a 30x 30 spatial resolution. The thermal Band 6
had a 120 x 120 spatial resolution, therefore, it was not
considered in the expeniment. Fig 4 shows the original
image of band 5 used in the current experiment. A four-
level WT was performed based considering the size of the
baseband for classification and the wee structure for the
SPIHT algorithm. The variance and interband correlation
matrix for the feature bard selection were calculated. Table
I shows the variance in the baseband, while table II presents
the interband correlation coefficient matrix in the baseband.
Band 2 was selected as the feature band, as shown in tables
Tand 1.

Fig. 5 shows the reference values used for the
classification in the baseband. The class information was
then extended to the other subbands based on considering
the spatial correlation and resolution, as shown in Fig. 6.
The fixed prediction coefficients for the interband
prediction were obtained from several training images,
including various geographical regions, such as forest, sea,
rivers, mountains, roads, and residential areas, etc. One
band included 13 subbands in the four-level WT domain
and 13 kinds of 6 x 6 covariance matrix were obtained,
excluding band 6. Table III shows the covariance matrix of
the residual images in the baseband.

A number of experiments were performed to compare the
proposed algorithms with various conventional algorithms.
The simulation results showed that the proposed algorithm
outperformed the conventional algorithms as regards the
average PSNR at an equal bit rate, as shown in table IV.

Fig. 4. Band 5 of original image.
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Fig. 5. Reference value of wavelet coefficients in baseband
of four-level WT domain.
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Fig. 6. Classification in baseband and its exiension to
subbands for Area-P.

Table 1. Variance in baseband.

Band 1 2 3 4 5 7

Variance | 12200 4768 14437 32172 40483 18200

Table II. Interband correlation coefficient matrix.

Band 1 2 3 4 5 7
1 ] 1000 0963 0956 0291 0481 0825
2 1.000 0991 0.164 0524 0.804
3 1000 0174 0530 0813
4 1.000 0632 0.191
5 1.000 0872
7 1.000

Table III. Covariance matrix of residual image data in
baseband.

Band | 1 2 3 4 5 7
1 2701 139 48 3397 2421 174
2 83 128 75 155 129
3 1541 173 866 785
4 40829 31276 8584
5 41733 16535
7 8414

Table IV. PSNR comparison with images reconstructed
using conventional methods at equal bit rate.

. Average PSNR [dB]
Bitrate Proposed ) CKLT- =
el | | cthod FPVQ por® | WI-KLT®
0.1 32.52 29.84 30.82 31.70
02 35.00 32.23 32.23 34.51
03 36.37 33.38 33.77 36.09
0.4 37.59 34.50 34.66 37.47
0.5 38.65 34.82 34.96 38.49

4. Conclusions

The current paper proposed a new multispectral image data
compression algorithm. When compared to conventional
algorithms, the proposed algorithm can efficiently reduce
the spectral redundancies by applying classified interband
prediction in the WT domain and a KLT for the prediciion
errors. As a result of the WT and KLT, the transform
coefficients are listed in a descending order spatially and
spectrally for efficient exploitation by the 3D-SPIHT
algorithm. A high prediction correctness is important in the
proposed algorithm as a more accurate prediction and
reduced residual image result in a better compression ratio.
Accordingly, work is currently underway to effectively
reduce the residual image so as to further improve the
multispectral image data compression efficiency.
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