A Minimal Power Scheduling Algorithm for Low Power Circuit Design

Chi-Ho Lin

Department of Computer Science, Semyung University
San 21-1, Shinwol-dong Chechon, Chungbuk, 390-711, Korea
TEL : +82-43-649-1272, FAX : +82-43-644-2111
E-mail :ich410@semyung.ac.kr

Abstract

In this paper, we present an intermediate representation
CDFG(Control Data Flow Graph) and an efficient
scheduling technique for low power circuit design. The
proposed CDFG represents control fiow, data dependency
and such constraints as resource constraints and timing
constraints. In the scheduling technique, the constraints
are substituted by subgraphs, and then the number of
subgraphs is minimized by using the inclusion and overlap
relation efficiently. Also, iterative rescheduling process
are performed in a minimum bound estimation, starting
with the as soon as possible as scheduling result , so as to
reduce the power consumption in low power design. The
effectiveness of the proposed algorithm has been proven
by the experiment with the benchmark examples.

1. Introduction

The objectives of high level synthesis is to translate a
behavioral description specified in a high level language
into an efficient register-transfer level structure that
implements the behavior. In the high level synthesis, the
behavioral description is usually transformed into a
CDFG(Control Data Flow Graph) as an intermediate
representation. A typical high level synthesis process
involves several subtasks including behavioral
transformations, module selection, clock period selection,
scheduling, and resource sharing, and RTL circuit
generationf1].

High level synthesis has a large impact on power
consumption, which, if properly exploited, can lead to
large power savings. Recent work has shown that the
most savings in power consumption are often obtained at
the higher levels of the design hierarchy[2-4].

Scheduling is one of the most important tasks in high
level synthesis. It determines the cycle-by-cycle behavior
of a design by assigning parts of the computation to be
performed to particular clock cycles(control steps or
control states)[5-9]. In this paper, we concentrate on
reducing power management into scheduling algorithm
used in high level synthesis comprises of the sequence of
steps by means of which an algorithmic specification is
translated into hardware. These steps involve breaking
down the algorithm into primitive operations, and
associating each operation with the time interval in which
it will be executed (called operation scheduling). In this
paper, we present a new VHDL intermediate
representation CDFG and an efficient scheduling
technique for low power design. In the proposed
scheduling algorithm, the constraints are substituted by
subgraphs, and then the number of subgraphs is
minimized by using the inclusion and overlap relation

efficiently. Also, iterative rescheduling process are
performed in a minimum bound, starting with the as soon
as possible as scheduling 1esult, so as to reduce the power
consumption in low power design. These methods speed
up our algorithm considerably without loss of optimally in
the scheduling result. The rest of the paper is organized as
follows. Section 2 describes the VHDL intermediate
representation.. Section 3 presents an algorithm for the
efficient low power scheduling technique. Section 4
discuss an in a minimum bound rescheduling process.
Section 5 describes experimental result in our proposed
algorithm, and finally section 6 gives conclusion.

2. The VHDL intermediate representation

The VHDL analyzer translates the behavioral
specification with VHDL description into the internal data
structure suitable for the application areas of high level
synthesis system.

entity example is

Port (
branch_pc, ibus: in BIT VECTOR(3 downto 0);
branch, ire: in BIT;
ire, ppc, obus: out BIT_VECTOR(3 downto 0);
);
end example;
architecture behavior of example is
begin
process
variable pc, oldpc: BIT_VECTOR(3 downto 0);
begin

ppe <= pc; 1
popc <= oldpc; 2)
obus <= ibus + “0100”; 3)
if (branch = “1’) then @)

pe = branchpc; 4)
end if} 6)
wait until (ire = “17))
oldpc = pc; 8
pc :=pc +“01007; 9

assert (NOW - pc’ event <= 200 ns)
report “Max. Time violation”;
end process;
end behavior;

(2)

ITC-CSCC 2002

)

Fig 1. VHDL description and CDFG.
(a) VHDL description.
(b) CDFG.

The internal data structure, CDFG, which represents
both the control flow and data flow effectively, is
constructed. The CDFG represents the constraints which
limit the hardware design such as conditional branch,
sequential operation and time constraints.

Fig. 1(a) shows a VHDL description for the example.
Fig. 1(b) shows a CDFG for the example of Fig. 1(a). The
semantics of VHDL description can be defined by the
internal form generated by the VHDL.

Let D = (V, E) be a VHDL description, V the set of
nodes for VHDL statements that represent VHDL
statements in D and E directed edges that appear relations
between nodes in D.

The internal representation CDFG of D is given by

CDFG = (G¢, G, Gy
(Definition 1) Sequential graph G¢ = (V, Ey) consists of
V the set of nodes for VHDL statements and directed

edges E¢= { (vi, v2) | viv2 © V, v, is the predecessor of
V2 }

(Definition 2) Hardware constraint graph G, = (V, E.)
consists of V the set of nodes for VHDL statements and
directed edges E.= { (v, w) | v w C V, there is one among

4 hardware constraints starting with v and ending with w }.

(Definition 3) Timing relation graph G; = (V, E)
consists of V the set of nodes for VHDL statements and
directed edges E, = { (vi, v,) | v v, © V, there is a timing
constraint starting with v, and ending with v, }.

Notice that Sequential graph G¢ = (V, Eg) does not exist
for clock parts and waiting part. CDFG is a control flow
graph which represents conditional branches and loops
efficiently. Also it represents data dependency and
constraints such as hardware resource and timing.

3. The efficient low power scheduling technique

In order to represent control flow, data dependency and
such constraints as resource constraints and timing

constraints effectively, the CDFG represents the
constraints which limit the hardware design in such a
way :

1) no variable is assigned more than once in each
control step

2) no I/O port is accessed more than once in each
control step

3) the total delay of operations in each control step
is not greater than the given control step-length

4) all designer imposed constraints for scheduling
particular operations in different control steps are
satisfied.

In order to satisfy any of the above conditions, the
proposed scheduling algorithm generates constraints
between two nodes that must be scheduled into different
control steps. In the proposed scheduling algorithm, the
constraints are substituted by subgraphs, and then the
number of subgraphs (that is the number of the
constraints) is minimized by using the inclusion and
overlap relation among subgraphs.

3.1 The removal of subgraph with inclusion relation

The hardware constraints are substituted by subgraphs,
and the number of the constraints is minimized by using
the inclusion and overlap relation among subgraphs. The
subgraph minimization for the hardware constraints
optimizes the number of control steps needed to execute
the nodes in the CDFG.

(Definition 4) Regardless of conditional branches, if
both edges E. is in inclusion relation, an included edge can
be removed .

The subgraph minimization for the hardware constraints
optimizes the number of control steps needed to execute
the nodes in the CDFG. In an example of Fig 2., if
edge(2,9) include both edge(3,4) and edge(2,9), An
edge(2,9) is removed. Just, because the nodes 3 and 4
cannot operate in the same control step, constraints
indicated by the nodes 2 and 9 can be removed.

(a) (b)

Fig 2. The removal of subgraph with inclusion relation
(a) A subgraph with inclusion relation
(b) The removal subgraph of Fig (a).

ITC-CSCC 2002

3.2 The modification of subgraph with overlap relation

After the removal of subgraph with inclusion relation,
we have to search for subgraphs with overlap relation to
minimize total operation time in replacing many
subgraphs with new subgraph. Accordingly to be
scheduled as soon as possible and to minimize total
operation time for the nodes in the CDFG, the overlap
subgraphs must be minimized with the following priority.

As shown in Fig 3. and Fig 4., if there is an overlap
relation between edges E, in subgraph, Overlap part is
replaced by new edge E; and then old new edge E, is
removed repeatedly until not exist overlap relation in the

CDFG.

(@ (b)
Fig. 3. Overlap subgraphs with a conditional
branch

$6012,19)

(@
Fig. 4. The modified results of Fig. 3.

We then partition each path in the CDFG into control
steps in such a way that our scheduling algorithm to

satisfy any of the conditions, determines control steps in
an expression (1)

T(N) = The weighted value for adjacent edges +
MAZX(operation time in predecessor nodes) (1)

4. A minimum bound rescheduling process

The basic behind minimum bound rescheduling process
stems from the pigeon hole principle: if N operations are
scheduled over K control steps, then it is guaranteed that
at least [N/K'| operations are scheduled into some control
step among those K control steps. This can be stated
slightly differently we are talking about a control steps
interval Z=[X, Y] whose length is Y-X+1. In this case, if N
operations of type T are scheduled in the interval Z, then
at least [N/(Y-X+1)] FUs of type T are required. Now
given a particular operation O, then clearly O, is
guaranteed to be scheduled in Z if [ASAP,, ALAP)) & Z.

For each interval Z, we find the number of operations
of type T guaranteed to be scheduled during that interval,
and estimate the lower bound on the number of FUs of

@ @2 &r O &
@7 @8 @9

s
°Q /
RS

Fig. 5. An example of scheduled result

For example in Fig 5., the four multipliers O,, 0,, Os,
and Os are guaranteed to be executed in control step
interval [1,2], since their time frames are fully included in
this interval example as shown in Fig 6. So [4/2]=2 is
estimated as a candidate of the number of multipliers for
this interval. To get a tighter minimum bound, these
candidates are estimated over all the control step intervals
and the maximum one is selected. In this case,
MAX(0,1,2)=2 is finally chosen as the minimum bound
on the number of multipliers. In a similar way, the
minimum bound on ALU count is estimated as 2

The initial time frame of O;is [1,2] as shown in Fig 6.
However, if we assume that the number of multipliers
available is equal to the low bound on the number on the
number of multipliers(=2), O; cannot be scheduled into

cstep

| Jr2 «3] 4| 45

1

*6 *7 +8 <9

2

-10

3

-1

4

Fig. 6. Time frames of operations

ITC-CSCC 2002

control step 1, since at least 2 other multipliers O, and O,
are guaranteed to be scheduled into control step. Therefore,
the time frame of O; shrinks to [2,2]. In similar way, we
can adjust the time frames of the operations as shown in
Fig. 7.

OOk Ok
tés @3 @9
10@ @7 @4
B o

Fig. 7. A minimum bound rescheduled result

5. Experimental Results

In this paper, our scheduling algorithm have been
implemented in C++ and UltraSPARC I1I system. Also, it
have been tested on the Table 1. In this experiment results,
we results the calculated power reduction ratio to adopt
the HLS benchmark through the result of an optimal data
path scheduling technique for low power circuit design.

Our methods were implemented within the framework
of low power high level synthesis. The effectiveness of
the proposed algorithm has been proven by the
experimental result for benchmarks. Especially FIR
system power consumption is reduced 38%.

Table 1. The low power synthesis result for benchmarks.

Ciruit | #Cyiops | #Operatlmns | #Regisers | PewerRed(%)
Difen 4 4 7
Teeng 4 5 [
bl FIR 10 s 24
EWF 13 5 1
Difen 4 4 4 7
Teeng 4 5 4 26
OURS ™ R 10 5 10 8
EWF 13 5 13 12

6. Conclusion

We presented a new VHDL intermediate representation
CDFG and an efficient scheduling technique for low
power circuit design.

We have presented a scheduling algorithm which, for a
given throughput, exploits the slack available to
operations to obtain a schedule that power management
technique. This more constrained scheduling process may
lead to a large number of execution units required.

The scheduling technique for minimizing the operation
time and handling the conditional branch effectively for
ASIC design have been performed. Unlike most previous
work, we also consider the interaction among these tasks
in order to better explore the design space. We have
implemented the algorithm, and presented experimental

results to demonstrate its effectiveness. Also, we have
obtained a solution that maximizes the ability to do power
management while still meeting user specified throughput
and hardware resource constraints.

" Reference

[1] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen,
*"Low power CMOS digital design," IEEE J. Solid State
Circuits, pp. 473--484, Apr. 1992.

[2] A. P. Chandrakasanet al., 'Optimizing power using
transformations, "IEEE Trans. Computer Aided Design,
vol. 14, pp. 12-31, Jan. 1995.

[3] R. Mehra and J. Rabaey, ““Behavioral level power
estimation and exploration," in Proc. Int. Wkshp. Low
Power Design, pp. 197-202, Apr. 1994,

[4] L. Goodby, A. Orailoglu, and P. M. Chau,
*"Microarchitectural synthesis of performance constra-
ined, low power VLSI designs,” in Proc. Int. Conf
Computer Design, pp. 323--326, Oct. 1994.

[5] A. Ghosh, " Estimation of Average Switching
Activity in Combination and Sequential Circuits”, in
Proc. 29th DAC, June 1992, pp.253-259

[6] P. Landman, " Power Estimation of High-Level
Synthesis", in Proc. European DAC, Feb. 1993, pp.361-
366

[7] A. Chandarksan et al., "HYPER-LP: A System fo
Power Minimization Using Architecture Transformati-
on," in Proc. ICCAD, Nov. 1992, pp.300-303

[8] R. Martin, "Power-Profiler : Optimizing ASICs Power
Consumption at the Behavioral Level", in Proc. 32nd
DAC, June 1995, pp.42-47

[9] A. Bellaouar and M. L. Elmasry, Low-Power Digital
VLSI Design Circuits and Systems, Kluwer Academic
Publishers, 1995.

ITC-CSCC 2002

