WWW Cache Replacement Algorithm Based on the Network-distance

Masaru KAMIZATOft, Tomokazu NAGATA{, Yuji TANIGUCHIY{, Shiro TAMAKIY}
$Department of Infomation Engineering,

Univ. of the Ryukyus

1 Senbaru, Nishihara, Okinawa, 903-0213, JAPAN

Tel.: +91-98-895-8715, Fax.: +91-98-895-8727
{Computing and Networking Center,

Univ. of the Ryukyus

1 Senbaru, Nishihara, Okinawa, 903-0213, JAPAN

E-mail: dai@ads.ie.u-ryukyu.ac.jp

Abstract: With the popularity of utilization of the In-
ternet among people, the amount of data in the network
rapidly increased. So that, the fall of response time from
WWW server, which is caused by the network traffic
and the burden on WWW server, has become more of
an issue. This problem is encouraged the rearch by re-
dundancy of requesting the same pages by many people,
even though they browse the same the ones.

To reduce these redundancy, WWW cache server is
used commonly in order to store WWW page data and
reuse them. However, the technical uses of WWW cache
that different from CPU and Disk cache, is known for its
difficulty of improving the cache hit rate. Consecuently,
it is difficult to choose effective WWW data to be stored
from all data flowing through the WWW cache server.
On the other hand, there are room for improvement in
commonly used cache replacement algorithms by WWW
cache server.

In our study, we try to realize a WWW cache server
that stresses on the improvement of the stresses of re-
sponse time. To this end, we propose the new cache
replacement algorithm by focusing on the utilizable in-
formation of network distance from the WWW cache
server to WWW server that possessing the page data of
the user requesting.

1. Introduction

In recent years, information services on wide area net-
work using WWW has been widely spread. As a re-
sult, the delay of the response time of WWW services,
because of the network traffic and the burden on the
WWW server, has become a big problem. The network
traffic and burden on the WWW server are encouraged
by redundancy of requesting the same pages by many
people, even though they browse the same ones.

One of the solutions for these problems is uuiliza-
tion of WWW cache server. A WWW cache server
is what gives the WWW data caching function to the
proxy server. There are a lot of programs working as
the WWW cache server. For instance, squid, apache
http server, CERN httpd server and Delegate server are
known as proxy server.

The outline of the function of the WWW cash server
is as follows. When a user demands page data from
WWW and WWW cache server holds the object that
the client required in the cache, the cache server trans-

Client Cache server WWW server

un'-

Gheck @ cmq 1«) Obict trenemiesion

) > '\ /l
;,m__m\ ~

&)

<

(5) Acosss

A 4

-
-

{8) Objmct recaive

(2) Cheah

{8)i0bjct recatve (1) Objpct Save

Cache hit 1: (1) = (2) — (8) — (9)
Cache hit 2: (1) = (2) - (3) = (4) — (9)
Cache miss hit: (1) = (2) = (3) = (5) = (6) = (7) = (9)

Figure 1. Web Cache System

mits the object to the client instead of requesting it to
WWW server. And when the required object is not in
the cache of the WWW cache server, while acquiring
an object from the original WWW, it stores the object
also in own cache (Figure 1) (conceptual diagram of
the WWW cache server). By realizing reuse of the same
object with the cache function, the amount of communi-
cations data between the WWW server and the WWW
cache server are cut down, and average response time is
also shortened.

On the other hand, there is no useful cache replace-
ment algorithm, which is used commonly by the WWW
server, taking the information of network-distance into
account to store and manage the page data. Though,
some existing cache replacement algorithms consider the
size of the page data and the access frequency of the
page. Therefore, from the view of improvement of the
response time, existing algorithms are not sufficient.

The purpose of the study is to realize a WWW server
that reduction of the stress on the improvement of the
response time. To achieve the end, we propose the new
cache replacement algorithm by focusing on the utiliz-
able information of network distance from the WWW
cache server to WWW server that possessing the page
data of the user requesting.

ITC-CSCC 2002

2. Existing Cache Replacement
Algorithms

Cache replacement algorithm is the method that
determines page data to be evicted if there is lit-
tle space for storing new ones. In this chapter,
we explain three major cache replacement algorithms,
Least Recently Used (LRU), Least Frequently Used
with Dynamic Aging (LFUDA) and Greedy-Dual Size-
Frequency (GDSF). Moreover, we sort out the problems
of each algolithms.

2.1 LRU

LRU is one of the most commonly used cache replace-
ment policies. LRU deletes the object that has been
used (read or written) less recently than any other ob-
ject. This simple algorithm uses only reference history
of FIFO to evaluate the value of the data. However,
‘there are rooms for improvement in the byte hit rate
and the hit rate in this algorithm, because LRU does
not consider the frequency of the refference and size of
the data (Figure 2).

Key = (Last refered time)

Aecnl
,., Ehmmmon

It moves to & head

Figure 2. List of LRU

2.2 LFUDA

LFUDA is a variant of Least Frequently Used that
uses a dynamic aging policy to accommodate shifts in
the set of popular data. In the dynamic aging policy, the
cache age factor is added to the reference count when a
data is added to the cache or an existing data modified.
LFUDA uses reference history and the frequency of the
reference to evaluate the value of the data. With the
use of frequency of the reference, LFUDA is expected
to cache the data having possibilities of being accessed
compared with LRU. However there are rooms for im-
provement in byte-hit rate, because LFUDA takes no
account of the data size (Figure 3).

Key = (Cache retention perod)
+ (reference count)
— (formula for adjustment)
2.3 GDSF

GDSF is a variant of the Greedy Dual-Size policy
that considers frequency of the reference. GDSF is op-
timized for caching more popular and smaller objects in
order to maximize object hit rate. GDSF policy assigns

Access Access

E’:‘:‘fir.:::. "5"-».1.@»@»@»@‘.?

Figure 3. List of LFUDA

a value to each object computed as the object’s refer-
ence count divided by its size, plus the cache age factor.
By adding the cache age factor, we limit the influence
of previously popular documents, as described above in
the part of LFUDA. Since GDSF considers the size of
the data besides the reference history and the frequency
of the reference, LFUDA is expected to achieve the im-
proved hit rate compared with LFUDA. However, there
still are rooms for improvement in byte-hit rate, because
GDSF caches smaller-sized data (Figure 4).

(Cache retention perod)
+ (reference count)/size
—~ (formula for adjustment)

Key =

”@"»'21»@»-»'?: +«:§Hj» 3 »r_z]»

the ob_;ect with smdl size

Figure 4. List of GDSF

the object with large size

All the algorithms introduced above does not utilize
the information of the network-distance to evaluate the
page data, therefore there still are rooms for improve-
ment in the response time.

3. Cache replacement algorithm
considering the network distance

As we mentioned in chapter 2, existing cache replace-
ment algorithms mainly focus on the access frequency
of each data, and no cache replacement algorithm con-
siders the network-distance between the WWW cache
server and the WWW server. Therefore the data that is
accessed fewer and placed further network tends to be
evicted rather than the data accessed more often and
placed nearer. This is one of the reasons of the fall of the
response time. In the other words, the existing cache re-
placement algorithms are not designed for improving the
response time. Thus we can improve the response time
by considering the information of the network-distance
to the WWW server.

In our study, we suggest a new cache replacement al-
gorithm, which is stressed on the improvement of the
response time, considering the network-distance besides
other factors. To prove the effectiveness of it, we exam-
ined the relationship between the network-distance and
the response time.

ITC-CSCC 2002

Distribution map(0-200ms)

700000 — . 35000
. ;
i
500000 | | 30000
30000 | | 700}
g |s
§ o |2 |
& E
@ e
- |
$ 300000 o | g 15000
£ |2
g
&
200000 | 10000
|
1
- L
100000 b K T 000
: . i
. k] - I
R o
°) &) 100 120 160 160 180 2% |
Network s> ~ .

Distribution map

3000 4000 5000 6000
Metwork distance(ss)

Figure 5. Relationship between the network-distance
and the data size (1).

Distribution map(200 6300KS)

Figure 7. Relationship between the network-distance
and the data acquisition time (1).

90000 — ‘
. Distribution aap?n-200msY
: b 26000
80000 | 1
{
i .
70000 |- I 14000 + w
P |
r | 12000 | 1
P ;]
£ o I3
% i ¥ 10000 }* o
v . ' ¥
& oo .
= g
£ 40000 1 8 .
L 13 8000
g -
8 : g
|
1% wof . .
g o
20000 1 8 ’3 .
] L. N
e S . |
10000 i
o
0 o i - .
20 2000 3000 4000 5000 6000

Network distance(ms)

Figure 6. Relationship between the network-distance
and the data size (2).

3.1 Analysis of log in a WWW cache server

We calculated network-distance of all WWW servers,
which are picked from an access log on a WWW cache
server runnning in the University of the Ryukyus. To
this end, we measured the average response time of a
transmitted ICMP echo packet to the WWW servers.
As for some servers that did not permit the use of the
ICMP echo packets, we used approximate value of the
average response time to measurable place by traceroute
command as the network-distanse instead. As a result,
the avarage of network-distance to the WWW server,
which had the demand from the user, was approximately
120.2ms. The request whose network-distance was less
than 67ms occupied about 50% of the whole, and the
request whose network distance was less than 200ms oc-
cupied about 80%, and other 20% was dispersed between
200ms and 5545.5ms (Figure 5, Figure 6). As for the ra-
tio of the completion time of acquisition of the data from

o 20 40 60 80 100 120 140 160 180 200
Network distance(ms) _ _.

Figure 8. Relationship between the network-distance
and the data acquisition time (2).

the WWW server, the request whose network-distanse
was less than 67ms accounted for 16%, and even the
request to the WWW server placed nearer than 200ms
was only 28% of the whole (Figure 7, Figure 8).

Judging from the result above, the request to the
WWW server whose network-distanse is more than
200ms, though it held only 20% of the number of the to-
tal access, accounted for no less than 72% of the overall
completion time of acquisition of the object. Therefore,
we can say that most of the access to the WWW server
are accounted by the request whose network-distanse is
more than 200ms. Meanwhile, the response time be-
come worse rapidly when the request to a WWW server
is further than 200ms. Thus, we can improve the whole
response time by caching the object whose network-
distanse is more than 200ms preferentially.

ITCG-CSCC 2002

3.2 Cache Replacement Algorithm by consider-
ation of Network-distance

From the above suggestions, we utilize the informa-
tion of the network-distanse in addition to access fre-
quency and the size of the object. We set higher prior-
ity to the object whose data size is larger and network-
distanse from the WWW cache server is further, and set
same degree of priority to the larger-sized object that is
in the further the WWW server and the smaller-sized
object that is in the nearer one. When the object is
referred by the client, we arrange the page data in the
priority in the referense order list to adjust the length
of the stay of the page data. Moreover, we use the dis-
tance time of 200ms as the basis of the priority value,
because it is thought to be effective judging from the log
analisys.

Though, we use the ICMP echo packet to measure the
network-distance, it is inefficient if we send it to all the
servers in the log list. Therefore, we only send the ICMP
echo packet to the newly accessed the WWW server, and
as for the WWW server accessed in the past, we does
not send it if it is accessd in 5 minutes. The reasons
why we set up the period of measure to 5 minutes are
that there are little difference of the response time of the
ICMP echo packet sent within 5minutes, and the result
of taking the load of the WWW cache server caused
by sending the ICMP echo packets into consideration.
As the basic value of performance evaluation, the hit
rate, which is calcurated by dividing the number of the
pages by the number of requested object, and the byte
hit rate, which is calcurated by dividing the data total
size of whole page that is hit by the number of total
requested object are used under normal conditions.

suggesting method 1 :

Key = (Cache retention perod)
+ (The network distance)

— (formula for adjustment)
suggesting method 2 :

(Cache retention perod)

+ (reference count)/size

+ (Thenetwork distance)

— (formula for adjustment)

Key =

3.3 Implementation

To implement suggesting method and verify the ef-
fectiveness of the cache replacement algorithm, we used
squid, a powerfull and high-efficiency WWW cache
server program that is distributed under GPL{GNU
General Public Lisence) and the current major release
version is Squid-2.4. In the current stable release of
squid, squid-2.4 Stable 6, the part of cache replacement
algorithm is separated as module. Therefore we can
mount the new algorithm and verify it easily.

4. Future works

In suggesting method, we give priory to the informa-
tion of the network-distance to determine the priority of
the cache object. However, there is no effective mean to
measure the network-distanse in real time, therefor we
use the ICMP echo packet experimentally. Sending the
ICMP echo packets to all the servers that is requested
by the user is not realistic because the number of re-
quest per unit time is untold millions. Moreover, so
far, the implementation is still experimental, therefore
the evaluation formula for calcurating the priority value
is still quite simple. In the future, we need to run a
simmulation to collect data in addition to real data to
calculate more sufficient valuation formula from more
detailed data.

5. Conclusion

In this paper, we prove the effectiveness of the infor-
mation of the network distance from the WWW cache
server to the WWW server based on the experimental
analysis of a log in WWW cache data running in a real
network. Then, we propose the new cache replacement
algrithm and experimentally mounted this algorithm
that utilizes the information of the network-distance.
To be more precise, we mounted the cache replacement

- algorithms, which utilizes the network-distance of the

cache object besides the data size and access frequency
as indication of its efficency, and then validate the effec-
tiveness by system operation data.

In the future, we improve the valuation formula that
determine the priority of the cache object, and suggest
new algorithms, which is more sufficient to improve re-
sponse time , and verify it.

References

[1] Katsumi KISHIMOTO, Tomokazu NAGATA, Yuji
TANIGUCHI, Shinji KONO, Shiro TAMAKI “Mobile
Agent based Web Cache Proxy System”, THE FIRST
IEEE ELECTRO/INFORMATION TECHNOLOGY
CONFERENCE, 2000

[2] “Squid Web Proxy Cache”,
http:/ /www.squid-cache.org/

[3] “The Apache Software Foundation”,
http://www.apache.org/

[4] “Netcraft Web Server Survey”,
http://www.netcraft.co.uk/survey/

[5] “Status of the W3C httpd”,
http://www.w3.org/Daemon/Status.html

[6] “DelGate Home Page”,
http://www.delegate.org/delegate/

~ [7] Noritaka OSAWA, Fumitaka HAYANO, Toshitsugu

YUBA, Katsuya HAKOZAKI “Evaluation of Re-
placement Policies in WWW Cache Based on Logs
from Proxy Server”, IPSJ 96-DPS-74, pp.191-196,
Jan. 1996

[8] N.Nishikawa, T.Hosokawa, H.Tsuji, Y.Mori,
K.Yoshida “WWW Trafic Analysis and Distributed
Cache System”, IPSJ DSM Report May. 19997

ITC-CSCC 2002

