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Abstract: In previous study about combinato-
rial optimization problem solver by using neural
network, since Hopfield method, to converge into
the optimum solution sooner and certainer is re-
garded as important. Namely, only static states
are considered as the information. However, from
a biological point of view, the dynamical system
has lately attracted attention. Then we propose
the “dynamical” combinatorial optimization prob-
lem solver using hysteresis neural network. In this
article, the proposal system is evaluated by the N-
Queen problem.

1. Introduction

The problem to find the optimum combination
on some constraint conditions is called combina-
torial optimization problem. This problem is dis-
cussed at the various cases[1]. It is difficult to solve
such problem in the case where the problem has
huge number of combinations. N-Queens problem
which this article deals with is one of the combina-
torial optimization problems.There are precedents
to apply neural networks to combinatorial opti-
mization problems, for famous example, mutually
connected neural network called Hopfield model is
proposed by D.W.Tank and J.J.Hopfield[2], 3]. In
Hopfield model, a monotonously decreasing func-
tion called energy function is defined. The cost
function defined to evaluate the solution in combi-
natorial optimization problem corresponds to the
energy function. Then, when the energy function
converges into its global minimum, the cost func-
tion indicates the optimum solution. However, if
many local minima exist in the energy function,
the system hardly converges into the global mini-
mum. Therefore, this system can find the optimum
solution in few cases. Then, the method which can
escape from such local minima by using the chaos
neuron is proposed[4], [5].

In this article, the network which can find the
optimum solution is constructed by using the hys-
teresis neuron. In previous combinatorial opti-
mization problem solver, the equilibrium point of
the network corresponds to the optimum solution
to obtain the solution[6], [7]. Namely, static states
are considered as the information. Then we have
made a study to remove all the oscillating state and
have published this[7]. However, from a biological
point of view, the dynamical system has lately at-
tracted attention. Then, in this article, we propose
the dynamical combinatorial optimization problem

solver using hysteresis neural network. Hystere-
sis neuron behaves as a relaxation oscillator and
cannot generate chaos. However, it is proved that
the system, which has large connected hysteresis
neurons, generates chaos by proper parameters|8],
[9]. In this article, the system behaves as chaos
and searches the optimum solution dynamically.
Namely, the system does not converge into the op-
timum solution, but continues to search the solu-
tion. At the present time, it has been researched
that the real neuron behaves as chaos{10}. It is con-
sidered that the proposal system behaves as such
real neuron.

2. System

2.1 Hysteresis Neural Network

The objective system is described by the follow-
ing piecewise linear differential equation.
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, where z;(t) is the inner state of i-th neuron, y;(t)
is the output of i-th neuron, g;(y(t)) describes the
connection of each neuron. A,,A_ is constant.
h(zi(t)) is the piecewise linear bipolar hysteresis
function as shown in Fig.1.
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Figure 1. piecewise linear bipolar hysteresis func-
tion

The equation 1 is simplified as the following.

{%(t_) = —z:(t) + pi(y(t)) 2)
yi = h(zi(t))

pi(y(t)) describes the equilibrium point of the
inner state of each neuron. The output does not
change if the equilibrium point is on the hystere-
sis branch as shown in Fig.2(a). On the contrary,
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the output will change in the case of Fig.2(b) and
continues to oscillate. For dynamical search, the
equilibrium points are set as shown in Fig.2(b).
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Figure 2. behavior of hysteresis neuron

2.2 Condition of Dynamical Search

From Fig.2(b), if the following condition is sat-
isfied, the inner state does not converge into the
equilibrium point, and the output will change.

yi(Opi(y(t) < -1 @)

The equation following is given by equation 1 and
2.

pi(y(t)) = g:(y(?)) + Aw:i(t)) (4)

Then the condition of dynamical search is de-
scribed as the following equation.

{8377 ®)

, where g;(y(t)) has the value as the following.
-1<gi(y(t) <1 (6)

If this condition is satisfied, the condition 3 is sat-
isfied too and the output continues to oscillate.

2.3 Relation between the Position of
Equilibrium Point and Arrival Time at
Threshold Point

From equation 2, the further the equilibrium
point locates, the larger difference of inner state
becomes. Then, in the case of Fig.3(b), inner state
will reach threshold point earlier than of (a); shown
in Fig.4.
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Figure 3. position of equilibrium point

2.4 Apply to Combinatorial Optimization
Problem Solver

In the combinatorial optimization problem solver,
cost function is defined to evaluate each solu-
tion. Cost function becomes minimum(or maxi-
mum) value when the solution is optimum. Then

Figure 4. arrival time at threshold point

if the connection functiong;(y(t)) is defined as cost
function simultaneously, each neuron’s output is
controlled by the cost function. Therefore, the net-
work can find the optimum solution.

From equation 1, the equilibrium point is as
shown in Fig.5.
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Figure 5. equilibrium point

From Fig.5(a), in the case of g;(y(t)) < 0, equi-
librium point becomes nearer when y;(t) = —1 and
becomes further when y;(t) = +1. Then in this
case, the inner state should reach threshold point
when y;(t) = +1 and should not reach threshold
point when y;(¢) = —1. Contrary, from Fig.5(b), in
the case of g;(y(t)) > 0, the inner state should not
reach threshold point when y;(t) = +1 and should
reach threshold point when y;(t) = —1. There-
fore, the output should become y;(t) = —1 when
9i(y(t)) < 0 and should become y;(t) = +1 when
5:(y(t)) > 0.

If the connection function g;(y(t)) is set as the
following, the output vector keeps the state near
the optimum solution, and continues to transit.
Namely, the network continues to search the op-
timum solution.

{ gi(y(t))ly.-(t)=+1 <gi(y(t))|ya(t)=—l <0 (7)
W)y ty=+1> g Wy t)=—1 > 0

3. N-Queens Problem
3.1 N-Queens Problem

Queen is the piece used in chess. Queen moves
for vertical, horizontal and diagonal freely. N-
queens problem is the problem to assign N queens
with no collision in N x N chess board. One of the
optimum solutions of 4 queens problem is as shown
in Fig.6.
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Figure 6. N-queens problem(N = 4)

Neurons are assigned to 2-dimensions for de-
scribing the solution of N-queens problem. Then
equation 1 is reformed as the following.

dz;;(t
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Each neuron corresponds to each square on the
chess board. Queen is assigned onto the square
which the ignited neuron corresponds to.

3.2 Constraint Condition of N-Queens
Problem

The constraint condition of N-queens problem
is described as the following.
1. Each row and column has only one queen.
2. Each diagonal line has only one queen or no
queen.
The cost functions following denotes the above con-
dition.

N
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The connection function g;;(y(t)) is obtained by
adding these cost functions.

9i;(y(1) = 0145 (u(t)) + 9245 (y(t))  (11)

The connection function g;;(y(t)) is satisfied the
condition 7. Then the system can search the opti-
mum solution by using this function.

4. Simulation

The simulation to find the optimum solution of
N-queens problem for the above system is carried
out. The system is evaluated by the following way.

1. How long time does the output vector keep
the optimum solution?
2. Does the output vector show all the optimum

solutions?
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Figure 7. ratio of the time keeping the optimum
solution
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Figure 8. transition of cost function(N = 8)
(A4 = 0,A_ = 1.000000001)

4.1 Ratio of the Time Keeping the Opti-
mum Solution

The time how long does the output vector keep
the optimum solution is shown in table 1 and Fig.7.
From Fig.7, though ratio of the optimum solution
decrease exponentially, the time how long the sys-
tem keeps the optimum solution hardly decrease.
Therefore, it is considered that the system has the
ability to search the optimum solution. The transi-
tion of cost function is shown in Fig.8. From Fig.8,
it is considered that the output changes busily
when the cost function has high value, but keep
the value comparatively in the case of the low cost.

4.2 Can the System Have All the Optimum
Solutions?

It is considered that the proposed system can
find all the optimum solutions because the system
does not converge into an optimum solution and
continue to search other optimum solution. Then
it is measured how many kind of optimum solution
is obtained by the system. The result is shown
in table 2. From table 2, it is confirmed that the
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Table 1. ratio of the time keeping the optimum
solution
(A4 = 0,A_ = 1.000000001)
N | fof all optima*  fof solutions time[%)]
4 2 24 5.05
5 10 120 10.38
6 4 720 0.00626
7 40 5.04 x 1098 5.51
8 92 4.03 x 1094 9.68
9 352 3.63 x 10% 2.46
10 724 3.63 x 1096 1.10
11 2.68 x 1093 3.99 x 1097 2.09
12 1.42 x 10% 4.79 x 10% 2.19
13 | 7.37 x 10% 6.23 x 109 1.92
14 3.66 x 10%% 8.72 x 10190 1.92
15 2.28 x 10%¢ 1.31 x 1012 1.77
16 1.48 x 10°7 2.09 x 1013 1.73
17 | 9.58 x 10%7 3.56 x 1014 1.60
18 | 6.66 x 108 6.40 x 105 1.44
19 | 4.97 x 10%° 1.22 x 107 1.34
20 | 3.90 x 10%° 2.43 x 1018 1.32
21 3.15 x 101 5.11 x 10*? 1.13
22 2.69 x 102 1.12 x 10%! 1.04

* from Queens Intro(http://queens.x2o.net/)

Table 2. the number of the optimum solutions

which the system found
(A4 =0,A.. =1.000000001)

N | fof all optima fof found found time
4 2 2 1.28 x 10°
5 10 10 1.47 x 10°
6 4 4 1.55 x 10°
7 40 40 4.04 x 108
8 92 92 1.55 x 10*
9 352 352 4.83 x 10*
10 724 724 1.88 x 10°
11 2680 2680 8.03 x 10°

system find all the optimum solutions to N = 11.
It is considered that the system can find all the
optimum solution over N = 12.

5. Conclusions

In this article, the dynamical N-queen problem
solver is considered. The proposed system is hardly
influenced by the exponential increase of the num-
ber of combinations. It is considered that the pro-
posed system does not fall into limit cycle and can
find all the optimum solutions because the system
shows like the chaotic behavior. It is been exam-
ined whether the system generates chaos.
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