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Abstract: This paper discusses a software reliability
model for the distributed s-PCT algorithm for remote
sensing applications. The distributed algorithm is designed
based on a Manager-Worker threading concept and goes
further to use redundancy to achieve fault tolerance. The
paper provides a status report on our progress in developing
the reliability concept and applying it to create a model for
the distributed s-PCT. In particular, we are interested in the
algorithm performance versus reliability.

1. Introduction

Software system reliability is defined as the probability that
a system can function flawlessly using specified resources,
during a period of time. There are several types of errors
that can cause a software system to fail. Discrepancy
between expected and actual output is considered one of
them. Network and hardware failure can interrupt the
software operation and, thus can cause the system to fail.
Failure can also come from information attacks, a malicious
intention to bring down the system. To equip the software
system with a mechanism to provide fault tolerance, threads
and processes redundancy are introduced. Applying
redundancy will allow a system to gracefully degrade to a
point of failure. Redundancy, however, requires additional
resources, which in turn implies, longer operation time and
higher system cost.

In previous researches, several reliability models have been
developed aiming at answering the question of how to
introduce redundancy for reliability improvement while
maintaining an acceptable performance and cost [8, 11, 15].
In the study by Berman and Ashrafi [4], four types of
reliability optimization models are described, namely, one-
function system without redundancy, one-function system
with redundancy, k-function without redundancy, and k-
function with redundancy. Distinctive models can be
derived from each type of systems. In this paper, we based
our reliability model on the k-function system with
redundancy. We propose a reliability model for the
distributed spectral screening principal component
transform algorithm. This algorithm has been employed in
a variety of remote sensing applications including hyper-
spectral data compression, information extraction and
fusion [12] and change detection [5, 14, 10]. We
incorporate the concept of reliability to the algorithm to
provide intrusion tolerance to system failure or information
attacks using the notion of redundancy. The next section
briefly describes the distributed algorittm. Then we

present formulations for reliability model. The final section
offers concluding remarks.

2. Distributed Spectral-Screening PCT
Algorithm

Our application of interest is in the field of remote sensing.
The goal is to produce a single color-composite image that
represents all the useful information from a set of images
from different sensors/wavelengths (multi-spectral image).
The data set explored was a 210-channel mulii-speciral
image, where each image frame corresponds to a foliated
scene taken from an altitude of 2000 meters at wavelengths
between 400 nm and 2.5 microns. The scene contains a
camouflage vehicle. We chose to experiment with s-PCT
algorithm {1] because of its capability in summarizing and
de-correlating images. The end result is an image that
shows significantly improved contrast levels. The forested
areas show significantly improved detail and the
camouflaged vehicle in the lower left corner is significantly
enhanced against its background. Post-processing steps can
subsequently be applied to detect edges in the image and
use structural information to detect and classify the
vehicles. Figure 1 shows frames picked from an input
image set and an output image.

Figure 1. 400, 1998 nm and output images
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Our distributed version of the algorithm uses the standard
manager/worker decomposition technique [6]. There are
three types of threads: The sensor thread partitions the
problem and distributes the sub-problems to worker
threads. The workers solve each allocated sub-problem,
send a result to the manager, and wait for the next sub-
problem. A manager thread coordinates the actions of the
workers, gathers partial results from them, assembles the
final color composite image, and provides access to a
displayed hardware. To reduce communication overhead, a
worker overlaps the request for its next sub-problem with
the calculation associated with the current sub-problem.
Using this approach the s-PCT algorithm is divided into 8
steps as follows:

1. Spectral classification: The sensor divides an original
image cube into P parts, where P is the number of
workers in the system. Each part, which consists of a set
of pixel vectors, is sent to a worker. Each worker
operates concurrently to form a unique spectral set by
calculating an arccosine of dotproduct of all pixel vector
pairs.

2. Merge unique sets: The P unique sets are sent back to
the manager and combined. Upon completion there will
be one unique set left with K pixel vectors.

3. Mean vector: Each component of the mean vector, m, is
the average of the pixel values of each spectral band of
the unique set. The n-band image produces a mean
vector of n elements.

4. Covariance sum: All the pixel vectors in a unique set are
divided into P parts, and sent to P workers. Each worker
then computes the covariance component and form a
covariance sum.

5. Covariance matrix: The covariance matrix is the
average of all the matrices calculated in step 4, and is
calculated sequentially by the manager since its
complexity is related only to the number of workers
rather than the image size.

6. Trasformation matrix: The eigenvectors of the
covariance matrix are calculated and sorted according to
their corresponding eigenvalues, which provide a
measure of their variances. As a result, the high spectral
content is forced into the front components. Since the
degree of data dependency of the caculation is high, but
its complexity is related to the number of spectral bands
rather than the image size, this step is also done
sequentially.

7. Transformation of the data: Each pixel vector in the
original multi-spectral image can be transformed
independently. Therefore, all workers transform their
portions of the data concurrently.

8. Color mapping: Each worker performs the human-
centered color mapping {1} using the first three resulting
components of step 7 to generate a portion of the final
color image.

3. Reliability Model

In our distributed s-PCT algorithm, sensor, manager, and
workers threads are dependent on one another. In other
words, all threads must function for the system to function.

This is called serial reliability configuration [8]. In this
configuration, the system reliability R, can be calculated as
follows:

Rt =Rs me XﬁRw

w=l

(eq 1)

R; = reliability of sensor thread

Ry, = reliability of manager thread

R,, = reliability of each worker thread w

For each tread i, reliability with constant failure rate can be
written as:

where

R =e™* (eq2)

where A, = 1/MTBF; (Mean-Time-Between-Failure)
t = Time of experiments

In serial configuration, there are many points that can cause
failure in the system. In order to increase tolerance against
hardware/network/software failure and information attacks,
redundancy must be introduced. To achieve this, we
consider series-parallel reliability model, where the system
contains threads with both serial and parallel relationships.
Each type of threads has shadow threads to guard against
all type of failures. When a thread fails, its shadow can
resume the work. Figure 2 shows a system diagram with
degree of redundancy equal to two.

Figure 2. A system comprised of threads in both series and
parallel relationship

To calculate reliability with shadow threads, equation 1 can
be modified as follows:

R =(1-(0-R,)1A-R,)x(A-(1~R,)1-R,,))

xlja—(l—Rwl )1-R,;) (eq3)

With redundancy of degree x, it is expected that the
performance would decrease by at least a factor of x since
the replicated thread required both memory and processor
resources. Moreover, the overhead of communication
associated with the more complex communication protocols
required to achieve redundancy is expected to bring down
the performance even further. In our previous experiments,
communication cost is approximately 10% of the total time
used [2]. The tradeoff between performance and reliability
is application dependent. Some applications require a high
degree of reliability while others have performance
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constraints. In this paper, we present a reliability model,
which provides a preliminary evaluation of performance
versus reliability and redundancy involving in thread
replication.

Using techniques developed by Foster etal [9], a

performance prediction model of the s-PCT algorithm can
be derived as follows [3]:

T, =£(C|m2sn +Cysn+Cyn’s+C,n’m* +Csm*) +
p

2
km “n +7,
P (eq4)

Ci(p—-Dsn+C,n’p+Cen® +C,T,

Where T, is the total execution time on an nXmxm
image size and s is the number of unique spectra in the
spectral screening process. T, represents the network
bandwidth, p is the number of processors used, and %
represents granularity level. Using stepwise linear
regression methods to eliminate terms that are insignificant
to the total time, equation 4 can be re-written as:

ksn km*n®

+C,—+C,
p

2
T'___Clkmsn

+Cy(p~Dsn+Csn’ +T,
(eq 5)

The constant T, and coefficients C,-Cs are calibrated using
a least-square fitting method and the values are listed
below:

To = 8.462, C, = 7.397¢-009, C, = -1.61¢-004,
C; =4.438e-008, C, = 1.381e-005, Cs = 6.754e-006

As stated in our previous work [2] that the communication
overhead for replication is 10% of the total time used,
performance cost, C; ,can be written as follows:

C, =1.1T, Deg, (eq 6)

Where Deg, is the degree of redundancy.

The performance cost function is speculated to have an
exponential behavior and will act as a penalty of reliability
increasing [13]. To obtain the actual relationship between
performance cost, C, and system reliability, R, in our
system, an empirical study is performed.

From a previous research by Dugan {7], a typical failure
rate of a standard processor is 10”° and the average software
failure rate is 10°. For an experimental period of 1500
hours, we can calculate the reliability using equation 2: the
software reliability is 0.8607 and the hardware reliability is
0.9851. Thus, the reliability of each node in the system is
0.8607x0.9851=0.8479. In the remote sensing application
described in section 2, a pre-collected data set is used as an
input. The sensor reliability, thus, refers to the reliability of

a typical processor. In the case of real-time applications,
the sensor reliability will depend on the actual sensor used.

We perform an experiment on an image size of
1280x320%x 210, T,, = 0.008 microsecond (100BaseT
Network), and s = 200. Two, eight, sixteen and twenty-four
processors are used with degree of redundancy equal to 1, 2
and 3. Using equations 3 and 6, the reliability model can be
formulated:

C,=fRR)

= ge®®

(eq?)
Applying nonlinear regression technique to equation 7, we
can calculate constants a and b, obtaining the values of
128.38 and 1.906 repectively. The sample coefficient of
determination (r?) is 0.68 and the standard error of the
estimation is 1.64 seconds. The r* of 0.68 is relatively low,
which implies that the model may need some improvement.
However, in the time range of our problem size, the
standard error of 1.64 is acceptable. The predictive data is
shown in Figure 3.

900
800
700
600 -
500
400 A
300 -
200 -
100 -
0 T . T T

0 0.2 0.4 0.6 0.8 1

Reliability

Performance Cost

Figure 3. Cost Function Versus Reliability

The low performance cost occurs when a large number of
processors are used in the algorithm with none or very little
redundancy. However, the reliability will drop significantly
with more processors added. Using our predictive model
we can find the optimum point of the cost function. In
other words, we can predict the performance cost given the
minimum reliability required for the system. For example,
with the minimum reliability of 0.8, our problem cannot be
solved in less than 500 seconds of execution time. The
concept of the reliability model developed in this paper can
be utilized in designing a system that can realize a
performance-reliability objective.
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4. Conclusion

This paper has described a fault-tolerant version of our
distributed  spectral-screening  PCT algorithm and its
associated analytical model for reliability prediction. The
algorithm has been applied to a typical remote sensing data
set.  The reliability model was calibrated against an
experimental data. Given a problem size and a reliability
constraint, the model can be used to estimate the achievable
performance. Our model is as yet in an early stage of
development and is not optimized. Considerable research
remains to examine the concept further.
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