An Extended Dynamic Schema for Storing Semi-structured Data

Mitsuru NAKATAT, Qi-Wei GE, Teruhisa HOCHINTT and Tatsuo TSUJIT

TFaculty of Education, Yamaguchi University, Japan
1677-1 Yoshida, Yamaguchi-Shi Yamaguchi 753-8513, Japan

H'Dept. of Information Science, Faculty of Engineering, Fukui University, Japan
3-9-1, Bunkyo, Fukui-Shi Fukui 910-8507, Japan
tel: +81-83-933-5402, Fax: +81-83-933-5402
E-mail: 1'{na.kata, gqw }@inf.edu.yamaguchi-u.ac.jp, ﬁ{hochin. tsuji}@pear.fuis.fukui-u.ac.jp

Abstract:
commonly. But, ordinary technologies aren’t suitable to construc-
t a complicated database such as a classical literature database
or an archaeological relic’s database. Because this kinds of da-

Recently, database technologies have been used

ta are semi-structured data that doesn’t have regular structures,
database schema can't be defined before data storing. We have
proposed DREAM model for semi-structured databases. In this
model, a database consists of five elements and the model has op-
erations similar to operations of set theory. And further we have
introduced dynamic schema “shape” showing structure of each el-
ement. We have already realized a prototype of DBMS adopting
DREAM model (DREAM DBMS) and constructing function of
shapes. However, shape is imperfect to describe database struc-
tures because it can’t explain nested structures of elements. In this
paper, we will propose a “shape graph” that is a dynamic schema
showing database structures more exactly and extend the DREAM
DBMS. Further we will evaluate the performance of constructing
function of shapes and shape graphs.

1. Introduction

This paper proposes an extension of a dynamic schema,
shape[1, 2], which represents semi-structured data and
describes the implementation and evaluation of a func-
tion to construct dynamic schema. Database technolo-
gies have been widely used in many fields. However, or-
dinary technologies aren’t suitable to construct a compli-
cated database such as a classical literature database or
an archaeological relic’s database, because this kinds of
data are semi-structured data that doesn’t have regular
structures and these structures are modified frequent-
ly. In other words, defining database schema (database
structure) for these data is quite difficult before storing.

Some data models handling semi-structured data
have been proposed[3, 4]. DREAM modelf1, 2] is one
of them. It is based on set theory and has operations
similar to set eperations. Although we can manage
semi-structured data by using these data model with-
out schema definition, knowing the database structure
is required in order to search for information in a large
amount of semi-structured data. Data Guides[5] and
shape have been proposed to represent the structure of
the semi-structured database. Data Guides and shape
do not include the inforination on the data that does not
exist in a database. These schemas are changed accord-

ing to creation, modification and deletion of objects and
are called dynamic schema here.

In DREAM model, there exist five kind of elements,
such as named elements, perspectives and objects, called
database elements. These elements will be explained in
next section. Shape is the information about structure
of each element and shows attributes of a correspond-
ing element. However, the shape doesn’t explain nested
construction of each element. For example, even if one
object consists of several perspectives, a shape of the
object doesn’t show which perspectives compose of it.
Therefore, database users couldn’t see general structure
of database elements.

In this paper, we propose a data structure, called
shape graph, trying to provide a more powerful repre-
sentation of database structures. A shape graph is a
tree consisting of shapes. Section 2. shows an outline
of DREAM model and definitions of shape and shape
graph. Section 3. gives extension of the original DREAM
DBMS to manage shape graphs. And further we will e-
valuate the constructing function of shapes as well as
shape graphs through experiments in Section 4..

2. DREAM Model

2.1 Database elements

DREAM model is a data model that supports semi-
structured database management system (DBMS). A
database consists of data elements, named elements,
perspectives, objects and bundles. These are re-
ferred to as database elements. A data element is an
element storing a data value. It is represented with a
triplet (id, type, d), where id is an identifier, type is data
type of the data value and d is a set of data values that -
has only one element. The named element is a triplet
of its identifier, name and a set of data elements and/or
objects. The object is a unit expressing an entity. It's
represented with a triplet (id, name, P), where id is an
identifier, namne is a object’s name and P is a set of
perspectives. A perspective represents an aspect of an
object. It’s a triplet of its identifier, its name and a set
of named elements. A set of objects can be managed
in a bundle. The bundle is a triplet of its identifier, its
name and a set of objects and/or bundles.

Figure 1 shows an example of a database. This is for

ITC-CSCC 2002

celadon plates

celadon cups

"OBJ)2 ™, OBJ ™
: OBJ1
4 E o id
out_wide, °':;'fn:' "‘:;'f‘"— o vide
of rim = nm of rim
out_side_ \ n
of bottom out side_ '
ol of_bottom
height gt
- | AN ‘

Eo 2] o

Z.
E'“ﬁ [

Figure 1. Example of a database

the pieces of the celadon cups and plates obtained from
an archeological site. Each of the data values obtained
by analyzing a data file can be put into a data element.
A named element is created by giving a name to it. In
Fig.1, there are two kinds of perspectives. Their nanes
are “top (view)” and “both (view)”. Three objects are
created and there are two bundles in Fig.1. The bundle
“celadon plates” holds two objects that were considered
a plate. The bundle “celadon cups” holds two objects
that were considered a cup. The OBJ2 couldn’t be clas-
sified clearly, so it belongs to both bundles. Each object
can consist of different perspectives and each perspec-
tive can hold different named elements. And further-
more, structure of these elements can be changed easily
by using operations of DREAM model. Therefore, in-
formation of relics can be stored in a DREAM database
even though they have different construction each other.
And advance schema definition isn’t needed.

2.2 Shape and shape graph

Shape is the information describing the form of da-
ta. This information includes names and data types.
The fundamental unit of shape is a shape entry de-
scribing the structure of a named element. A shape
entry is a triplet (id,name, DT), where id is an iden-
tifier, narne is a name of a nammed element and DT is
a set of data type names. Consider a named element
ne_l = (id.1, “nm’', N). The name of the shape entry
for ne_l is “nm’”. When N has data elements composed
of primitive data such as “integer” and “Hoat”, these are
elements of DT of the shape entry.

Shape describes the structure of perspectives, objects
and bundles. It is a triplet (id,name, S), where id and
name are an identifier and its name, and S is a set of
shape entries for the named elements in those clements.
Figure 2 shows the shape entries for the named elements
of OBJ2 in Fig.1. And it also shows the shapes of OBJ2
and perspectives in OBJ2. The 038 is a new shape entry
obtained from 030 and 032. Because there are two shape
entries of which the pame is “ID” in the OBJ2, these
shape entries are merged to 038. The 039 is obtained

Shape entries of QB2
(030, “ID”, {iut})
{031, “outside.of.rim®, {string})
(032, “*ID", {int})
(033, “out_side.ofrim”, {string})
(034, “out_side_of-bottom”, {string}}
(035, “height”, {float})
Shapes of perspectives in OB.J2
(036, “top”. {030, 031})
(037, “both”, {032, 033, 034, 035})
Shape of OBJ2 (containing new two shape entries indicated
with *1 and *2)
(038, “ID”, {int}) --- *1
(039, “outside_of.rim”, {string}) --- *2
(040. “OBJ2", {038, 039, 034, 035})

Figure 2. Shape entries and shape of OBJ2 and shapes
of perspectives in OBJ2

from 031 and 033 siwilarly.

Shape provides us information about attributes in-
cluded in perspective, object and bundle. But it doesn’t
give us information about other elements composing the
database element: for example, a bundle is composed of
many objects and an object is composed of some per-
spectives. The information is very important to under-
stand construction of databases. If users don’t catch
construction of their database, they might not be able
to utilize theirs. Therefore, we propose shape graph.
There are two kinds of shape graphs. One is the shape
graph of an object that is a triplet (id, s_obj, {s_per}).
where id is an identifier of a shape graph, s_obj is a shape
of the object and {s_per} is a shape set of perspectives in
the object. Another is the shape graph of a bundle that
is a four-piece set (id, s_bndl, {s-per}, {s-obj}), where id
is an identifier, s_bndl is a shape of the bundle, {s_per} is
a shape set of perspectives and {s_obj} is a shape set of
objects in the bundle. For example, the shape graph of
OBJ2 is a triplet {041, 040, {036,037}). Figure 3 shows
its structure. As showing in Fig.3, a shape graph is a
tree consisting of shapes that correspond to the object
and the perspectives.

ITC-CSCC 2002

3. Design and Implement
3.1 Storing database elements and shapes

Apply shape graph, we extend the original DREAM
DBMS. The extended DREAM DBMS has been im-
plemented by commercial Object Oriented Relational
DBMS UniSQL release 5.0 on Compaq ProLiant ML350
server (CPU PentiumnIIl 600MHz, 256MB Memory, Red-
Hat Linux release 6.1.J).

Each database element such as a named element,
shape, shape entry and shape graph (we call shapes,
shape entries and shape graphs as SHAPES for short
hereafter) are stored in a corresponding class (here class
is table in an UniSQL database). Figure 4 shows class-
es of “named element” and “shape entry”. A clasy
“shape entry” to store shape entries has attributes “id”,
“pame”, “S" and “ID”. An attribute “ID” is a set
of identifier of database elements corresponding to the
shape entry. The attribute “ID” of class of “Named el-
ement” is a similar attribute of “ID” of “Shape entry”.

On the other hand, database operations in DREAM
DBMS are provided as API(Application Program Inter-
face) libraries of C langnage. These API libraries is re-
ferred to as DREAM APIL

3.2 Utilizing shape graphs

Next, we describe how the shapes and shape graphs are
used. In general database systems. users search and op-
erate data on the basis of a database schema that consist-
s of database name, table name, attribute names and da-
ta types and so on. But there isn’t a database schema in
DREAM model and each object has different structure.
Users might know only database name and some bun-
dle’s name and might not know structure of each object.
To manage database elements easily even if users don’t
kunow the details of database components, we provide
graphical user interface implemented by DREAM API,
Java and JNI[6]. Figure 5 shows structure of DREAM
DBMS. And Figure 6 shows two windows of GUI. The
left window is to explain a shape graph of a bundle
“celadon_porcelain™. As the figure shows, the bundle
has named elements, which has name “out_side_of_rem”,
“height”, “radius” and so on. The condition to search

Figure 3. The shape graph of OBJ2

objects, of which radius is 6cm (radius = 6), is indicated
on the left side tree of the window. And the right side
tree is a result of the searching. As it shows, there is one
object, which satisfies the condition. The right window
explain the detail of the object looked by the searching.

3.3 Updating shapes and shape graphs

SHAPES should be reconstructed when an update op-
eration, such as insertion, modification or deletion, is
executed. For example, a shape and a shape graph of a
bundle should be reconstructed when an object is added
into a bundle. Because it takes long time in reconstruct-
ing all SHAPES, we introduce two new classes. The first
is a class “update_db_clement” storing histories of oper-
ations. The second is a class “remake shape” storing
the database elements related to shape entry, shape and
shape graph that should be reconstructed. By these two
classes, the system needs only to change SHAPES that
should be reconstructed.

4. Evaluation

We have implemented the extended DREAM DBMS and
constructing function of shapes and shape graphs on it.
To evaluate the constructing function, we have measured
run time taking in constructing shapes and shape graphs
for the Web contents database of Yamaguchi University,
Japan. Because web contents data can be collected au-
tomatically and easily, we use these data as the sample
of semi-structured data. The run time is measured every
200 objects under the following two conditions.

Condition 1 To totally reconstruct SHAPES for 200,
400, 600, 800, 1000 objects.

Condition 2 To reconstruct a part of SHAPES that
should be reconstructed, when 150, 350, 550, 750, 950
objects have been stored and 50 objects are inserted.

In the experiment under condition 2, information
stored in the classes “update_db_element” and “re-
make_shape” that is used to identify shapes should be
recoustructed. Table 1 and Figure 5 show the times to
reconstruct SHAPES every 200 objects. The data in Ta-
ble 1 show the average of 10 times’ executions. When
stored 1000 objects. constructing all shapes takes 62.27
seconds. On the other hand, constructing partial shapes
that should be reconstructed takes only 16.8 seconds.
From these results, it is clear that adopting the data of

DREAM AP

Z——
QL

Figure 5. Structure of DREAM

ITC-CSCC 2002

Named element Shape entry
id name s |Ib id name S D
0100 “ID” fo1]] 030 — 030 D" {int} | {0100, 0203}
0101 | “out side of rim” | {02}] 031 — 031 | “out side of rim” | (stringl | {0101, 0204]
0203 "ID” {03} 030
Figure 4. Class “named element” and class “shape entry”
hundle Eob}eﬂ
© @8 colad on_porceloin e
Ol shape ¢ Eboth
O G ojecx | e-@dout_side_of bottor
¥] ;. oEout_side_of_rim
) ¢ <Dmn_tldc_pf.rin i ogkl::
, Dﬁd.ﬁ! & Gd
~\E L J::-] g -
. L 4 2] radius
8 o5 P ah
eight
8 ::-:;;‘: :s_qunt:ﬂm . @nl’;ht
o 8 out_side_of rim
O G persp ective e Ekind
o 2id

Figure 6. Windows of DREAM GUI

Table 1. Results of measurements

Condition 1 Condition 2
Number of | Time to Numberof | Time to
objects [derive shape objects {derive shape
(scc) (sec)
200 10.4 150 — 200 8.02
400 13.71 350 — 400 9.48
600 31.78 550 — 600 123
800 46.86 750 — 800 14.51
1000 62.27 950 — 1000 16.8
)
60 Il 6227
%0 <
g /?{
)] 178
& 30
Y /
168
13714___._,._,_————.‘“9'—".
10 —ﬁ

Nurber of objects

Figure 7. Times to construct SHAPES

these two classes to reconstruct SHAPES is an efficient
method.

5. Concluding remarks

We have proposed shape graph that can express nested
structure of database elements. It consists of a shape of
a corresponding database element and one or two sets of
shapes of nested elements. By the GUI showing shape
graphs, users can operate databases even if they don't
grasp a database schema. Further we have evaluated

constructing function of SHAPES by measuring run time
of constructing SHAPES. The experimental results show
that our method can reconstruct SHAPES efficiently.
As the future works related to realization of the
DREAM, we need to (i) complete the API libraries and
GUI of DREAM,; (ii) improve run time for updating op-
erations and constructing SHAPES; and (iii) provide the
database query and manipulation language such as SQL.

References

[1] Hochin, T. and Tsuji, T., “A Method of Construct-
ing Dynamic Schema Representing the Structure of
Semistructured Data”, Proc. of Int’l Database Engi-
neering & Applications Symposium 99, pp.103-108,
1998.

[2] Nakata, M., Hochin, T., and Tsuji, T., “Bottom-up
Scientific Databases Based on Sets and Their Top-
down Usage”, Proc. of Int’l Database Engineering
& Applications Symposium 97, pp.171-179, 1997.

(3] Buneman, P., et al, “Adding Structure for Un-
structured Data”, Proc. of the 6th Int’l Conf. on
Database Theory, pp.336-350, 1997.

[4] Papakonstantinou, Y., Garcia-Molina, H., and
Widom, J., “Object Exchange Across Heteroge-
neous Information Sources”, Proc. of 11th Interna-
tional Conference on Data Eng., pp.251-260, 1995.

[5] Goldman, R. and Widom, J., “DataGuides: En-
abling Query Formulation and Optimization in
Semistructured Databases”, Proc. of the 2%rd VLD-
B Conf., pp. 436-445, 1997.

[6] Rob Gordon, Essential Jni: Java Native Interface
(Essential Java), Prentice Hall, 1998.

ITC-CSCC 2002

