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Abstract : In this paper, we design an efficient,
scalable one-dimensional discrete wavelet transform (1D
DWT) filter using data reorder unit (DRU). At each level,
the required hardware is optimized by sharing multipliers
and adders because the input rate is reduced by a factor of
two at each level due to decimation. The proposed
architecture shows 100% hardware utilization by balancing
hardware with input rate. Furthermore, sharing the
coefficients of the highpass and the lowpass filters using the
mirror filter property reduces the number of multipliers and
adders by half. We designed a scalable DRU that efficiently
reorders and feeds inputs to highpass and lowpass filters.
The proposed DRU-based architecture is so regular and
scalable that it can be easily extended to an arbitrary 1D
DWT structure with M taps and J levels. Compared to other
architectures, the proposed DWT filter shows efficiency in
performance with relatively less hardware.

1. Introduction

There have been significant achievements in
algorithms and architectures in processing digital signals,
such as image, video and audio in multimedia. The discrete
wavelet transform (DWT), based on time-scale
representation, is receiving considerable attention in signal
and image processing areas. Wavelet transform can be
considered as a multi-resolution signal analysis, which
decomposes a signal into its components in different
frequency bands. DWT does not have the blocking effect
inherent to discrete cosine transform (DCT) and provides a
relatively high compression rate, so that it can be applied to
low bit-rate image compression. The applications of DWT
include, but are not limited to image compression, speech
analysis, pattern recognition, and computer vision
[21,[31,[41,[5]. One drawback of a system based on DWT is
that it demands massive computations.

In recent years, many researchers have proposed a
number of VLSI architectures on discrete wavelet transform
(DWT) to achieve real-time signal processing
[61,[71,[81,[91,[10),{12]. The lattice structure for the 1D
DWT is regular and scalable with a complex folded
scheduling control [6]. Three types of the recursive 1D
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DWT architectures (systolic, semi-systolic, and RAM-
based) [7] show a good performance and hardware
utilization but require complex routing networks and
scheduling. Parallel approaches have been proposed to
increase the performance by using more hardware [7],[8].
High-speed parallel architecture with dyadic structure
proposed in [9] applies the pipeline structure with two sets
of filter banks (highpass and lowpass) at each level. In this
paper, we propose an efficient 1D DWT with fewer
hardware resources, employing a mirror filter property in
orthogonal wavelets.

This paper outlines as follows. Section 2 describes a
brief introduction to the DWT and the Daubechies filter
used in this paper. Section 3 describes the proposed 1D
DWT architecture using data reordering. The structure of
the data reorder unit (DRU) is generalized. The
performance analysis and simulation for the architecture are
discussed in Section 4. Finally, concluding remarks are
given in Section 5.

2. Discrete Wavelet Transform

In wavelet analysis, signals are represented using a set of
basis functions derived by shifting and scaling a single
prototype function. The family of wavelet basis functions
can be generated by translating and dilating the mother
wavelet corresponding to the wavelet. Given a fixed scale
m, one can find a “mother” scaling function ¢(¢) such that
the family of functions

G (1) =27""29(27"t — 1) )

forms an orthogonal basis. If f,,(f) denotes the value ofﬂt)
at resolution level m, then f,,(f) can be represented as

fm (t) = zc(m+l)n¢(m+l)n +2d(m+l)n(p(m+l)n (2)
n n

In this equation, Cpme+ns and di.p. are the scaling
coefficient and the wavelet coefficient respectively,
mathematically represented as
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In equation (3), A() and g() are the lowpass and the highpass
filters obtained from the wavelet. Therefore, if ¢(r) is
considered a lowpass function, and the wavelet ¢(?) is
considered a bandpass function, then the function can be
synthesized as the sum of low and high frequency
components where m is the resolution level.

Whereas the classical short-time Fourier transform uses
the same size of filter on the entire time-frequency domain,
the wavelet transform takes different size of windows at
variable scale, so that it is suitable to analyze spatial and
spectral locality. Mallat showed that this multiresolution
representation of a signal could be computed using a
pyramid filter structure of quadrature mirror filter (QMF)
pairs {1]. The implementation of the DWT can be realized
in the form of filterbanks. Each filterbank comprises
lowpass and highpass filters succeeded by decimation by
two. In this paper we used Daubechies wavelets with mirror
filter property. The coefficients of Daubechies wavelets are
summarized in Table 1.

©)]

Table 1. The Daubechies filter coefficients

Daubechies M= 6

m H (lowpass) G (highpass)

0] 0.33267055295008 -0.03522629188571
1] 0.80689150931109 -0.08544127388203
2] 0.45987750211849 0.13501102001025
3] -0.13501102001025 0.45987750211849
4| -0.08544127388203 -0.80689150931109
51 0.03522629188571 0.33267055295008

Daubechies M= 4

0] 0.48296291314453 0.12940952255126
1] 0.83651630373781 0.22414386804201
2] 0.22414386804201 -0.83651630373781
3] -0.12940952255126 0.48296291314453

The Daubechies filters used in this research satisfies the

following relationship between the filter coefficients.

If we apply this equation to the lowpass and highpass filter,

gM—l-m = (—l)m hm

(M>2) €))

the transfer function H(z) and G(z) can be rewritten.

HZ)= hy+ hz "+ -+ hy _z= M

Gz) = ("I)M.llﬁmx +(__1)M-z b, 22—1 e +(—I)0ibz'(M") (5)

Therefore, 4-tap 1D Daubechies filter can be computed as

follows;

V=Gt e Iy ta, i low

4 =—ah+a, h-a, h+a,ly: high (6)
Vo =aofty [l({ 1
=g, (4]
v =ah+ah+ah, /1
w=-ah+ah —a (A1
v=a}ytah+ah+ah, (41

=-ah+ah -ah+ah, (1

3. Proposed 1D DWT Architecture

The proposed 1D DWT architecture in Figure 1 shows a
cascade of DWT blocks at each level, where N is the
number of inputs and L’ and H' are the outputs of lowpass
and highpass filters at level i. Since the input data rate is
reduced by half at each level, the required hardware to
finish the DWT process for a certain level can be half of the
previous level. In Figure 1, P; stands for the required
hardware at level i; for example, a single M-tap filter is
required for level 1. In M-tap Quadrature Mirror Filter
(QMF) structure, g, =(-1)"h, holds, where g and

are the coefficients of highpass and lowpass filters and 0 <
m < M-1. We propose a parallel 1D DWT architecture only
with one set of filters employing the relation stated above.
The data reorder unit (DRU) is designed to rearrange data
for lowpass and highpass filters.

—> H' (N/2)
» H2
Level 1 —> H(N/4)
U Levei 2 L2 l———oum H3 (N/8)
Input-—-—> —| Level 3
N N /2 N /4 > (3 (N/8}
Py=M Py=M /2 Py=M /4

Figure 1. The proposed 1D DWT architecture
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Figure 2. Block diagram of level 1
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Figure 2 shows a block diagram of the 1D DWT (level
1) with 4 taps. The input sequence / is split into even and
odd and fed into the DRU block. The proposed structure
produces lowpass and highpass filtering outputs at odd and
even clock cycles respectively. To make the filtering
possible, the DRU reorders the stored data (with inputs at
even clock cycles) and feeds them to the filter block. The
DRU-based architecture is quite regular and can be easily
extended to an arbitrary 1D DWT structure with M taps and
J levels. The DRU block of 1D DWT with M-tap filter
length consists of M registers, and each register in DRU
selects one of two inputs.

The following explains the DRU structure of level 1. In
even clock cycles, the first two registers select I, and I, as
inputs, whereas the rest of registers rearrange the data
among them in reverse order. In odd clock cycles, however,
all of M registers rearrange the data in reverse order. We
can design the DRU of j-level in a similar way, where 1 <
< J. The number of registers in DRU has been minimized
by lifetime analysis [11]. Table 2 depicts the data flow of
level 1 in the proposed architecture that shows the
rearrangement of data for filtering at each clock cycle.

Table 2. Data flow of level 1

easily extended to the 1D DWT with M taps and J levels.
At 27 .k +A ,, data in registers is swapped on the axis

of M/2 and (M/2)+1 when M is odd, while swapped on the
axis of [M/2]+1 when M is even. On the other hand, at

277 k+2/" + A, data in registers is swapped on the

axis of (M/2)-1 and M/2 when M is odd, whde swapped on
the axis of |/ /2 ) when Miseven. -

DRU,

0,000,040

Figure 3. Block diagram of level 2
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Figure 3 and Figure 4 show the block diagrams of level
2 and level 3 respectively. The shaded squares in the figures
are nothing but the latches for pipelining for high
performance and low power. The offset of the switching
time in DRUs of level 2 and 3 is slightly adjusted due to the
output delay of the previous levels. If we ignore the
pipeline latches, the output delay (latency) A ,atlevel j can
=A,,+27 (j2L,A;=0). In this
case, the register in the output of level j (22) should be
reset to accumulate the partial sums at T, =A +2/" .k

clocks (+~0,1,2,3,...).

The proposed architecture is well balanced with data
rate at each level and therefore shows 100 % hardware
utilization. The data flow table for levels 2 and 3 can be
acquired in a similar way to Table 2. The required number
of multipliers and adders for the J-level 1D DWT is
approximately il'M j2++ where M is the filter length.

k=l

The proposed DRU structure is so regular that it can be
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Figure 4. Block diagram of level 3

4. Simulations and Analysis

The proposed 1D DWT was designed in VHDL and
verified under Modelsim environment. Figure 5 shows the
timing diagram for the proposed 1D DWT. The signal
(H'.L"), (H’,L%), and (H’,L?) represent the outputs of levels
1, 2, and 3 respectively. The outputs of the lowpass and
highpass filters at each level are overlapped by half DWT
cycle and produced every 2 clock cycles for (H',L), every
4 clock cycles for (H’,L?), and every 8 clock cycles for
(K’ L. The filter coefficients and data of the proposed 1D
DWT are fixed-point numbers. The Danbechies filter
coefficients and data are encoded with 8 bits and 16 bits
respectively. The lower 5 bits of data are assigned for the
fractional part and the remaining is assigned for integer and
sign part.

In Table 3, we compare the performance of our
architecture with that of the various 1D DWT architectures
in terms of multipliers, adders, period, hardware utilization,
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and scheduling. The systolic architecture in [7] has a period
of 2N to complete the DWT and requires complex routing
networks to provide the filter cells’ right values. In another
systolic architecture [12], the hardware efficiency decreases
as the decomposition level increases. The parallel approach
in [8] needs a similar amount of bardware; however, it
additionally requires JoM storage to keep the intermediate
data for higher levels. The carefully balanced pipeline
architecture in [9] shows higher throughput by utilizing two
filter banks in parallel. The folded architecture that has
shorter latency does not achieve maximum hardware
utilization and requires complex routing and control [10].

& Sort s for cach o

Figure 5. The timing diagram for the proposed 1D DWT

Table 3. The performance comparisons of the various 1D
DWT architectures (M=4, J=3)

Architecture | Mult. | Adder |{Period {H/W util,| Scheduling
Systolic [7] 8 8 2N | 100% }| complex
Parallel [8] 8 6 N 100% | complex
Pipelined [91} 14 14 N2 | 100% simple
Folded [10] 8 6 N | 87.5% | complex
Systolic [12]} 12 9 N | 58.3% | simple
Proposed 7 6 N | 100% simple

5. Conclusion

In this paper, efficient 1D DWT architecture in
orthogonal wavelets is proposed. Highpass and lowpass
filtering outputs are produced in a single filter by virtue of
data reordering in DRU. The required hardware at each
decomposition level is reduced by half to balance with
input data rate, and therefore the proposed architecture

shows 100% hardware utilization, The DRU-based
architecture is quite regular and scalable so that it fits into a
VLSI implementation and can be extended to an arbitrary
1D DWT structure with M taps and J levels.
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