A Study of on Extension Compression Algorithm of Mixed Text by
Hangeul-Alphabet '

Kang-yoo Ji' Mi-nam Cho® Sung-soo Hong’ and Soo-bong Park*

24 Department of Information & Communication Engineering,
Dongshin University #252 Dacho-dong, Naju, Jeonnam
520-714 Republic of Korea
Tel.:+82-613-330-3193, Fax.: +82-613-330-2909
e-mail : neobacje@bic.re.kr
3 Department of Computer Information Science DongKang College
#771 Duam-dong Bukgu, Gwang Ju 500-714 Republic of Korea
Tel. +82-62-520-2263, Fax.:+82-62-520-2216

Abstract : This paper represents a improved data
compression algorithm of mixed text file by 2 byte
completion Hangeul and 1 byte alphabet form.

Original LZW algorithm efficiently compress a alphabet
text file but inefficiently compress a 2 byte completion
Hangeul text file.

To solve this problem, data compression algorithm using 2
byte prefix field and 2 byte suffix field for compression
table have developed. But it have a another problem that is
compression ratio of alphabet text file decreased.

In this paper, we proposes improved LZW algorithm, that
is, compression table in the Extended LZW(ELZW)
algorithm uses 2 byte prefix field for pointer of a table and
1 byte suffix field for repeat counter. where, a prefix field
uses a pointer(index) of compression table and a suffix field
uses a counter of overlapping or recursion text data in
compression table.

To increase compression ratio, after construction of
compression table, table data are properly packed as
different bit string in accordance with a alphabet, Hangeul,
and pointer respectively. Therefore, proposed ELZW
algorithm is superior to 1 byte LZW algorithm as 7.0125
percent and superior to 2 byte LZW algorithm as 11.725
percent.

This paper represents a improved data Compre -ssion

algorithm of mixed text file by 2 byte completion Hangeul
and 1 byte alphabet form.
This document is an example of what your camera-ready
manuscript to ITC-CSCC 2002 should look like. Authors
are asked to conform to the directions reported in this
document.

1. Introduction

To express data size in small space and increase
transmission speed in data transmission and store, studies
on data compression have been actively developed.

Data compression programs developed include ICE, AXE,
PKZIP, LHA(Lempel Zev Huffman), and LZW(Lempel
Ziv Welch). Such software has been developed as fitted
program to compress text file or execution file with
alphabet ASCI code or EBCDIC code system, processed
by 1 byte. Thus, to compress 2-byte WanSeongHyeong

Hangeul or Hangeul-alphabet mixed text file, compression
rate is quite decreased.

Although much has been studied on compression
algorithm needed to Hangeul compression, their focuses are
on extending LZW compression algorithm with two
directions. First, 2-byte WanSeonghyeong Hangeul is
separated into l-byte unit to compress like
alphabet. Secondly, compression is executed by 2-byte unit,
the size of WanSeongHyeong Hangeul. In the former, as
Hangeul-alphabet mixed file is separated into 1-byte unit, it
is not efficient to compress 2-byte WanSeongHyeong
Hangeul. The latter considers Hangeul and alphabet as 2
byte, so it is very effective to compress Hangeul, while it is
not very good for alphabet compression.

Therefore, when 2-byte WanSeongHyeong Hangeul and 1-
byte alphabet are compressed by 1-byte unit, this study
analyzed existing LZW compression algorithm (LZW1)
and LZW?2 algorithm, which can effectively compress them,
and suggested new algorithm to fit with compression of
Hangeul-alphabet mixed text.

This document is a version of the instructions for

preparing copies for the final ITC-CSCC 2002 proceedings.
The format here described allows for a graceful transition to
the style required for that publication.
This document is an example of what your camera-ready
manuscript to ITC-CSCC 2002 should look like. Authors
are asked to conform to the directions reported in this
document.

2. Analysis of LZW WanSeongHyeong
Hangeul compression algorithm

2.1 WanSeongHyeong Hangeul compression algorithm
(Method 1)

LZW compression algorithm to compress Hangeul text
file uses greedy parsing algorithm to divide into
string(string) and makes input data binary-coded. Every
element of string table within storage location to execute
compression consists of 2-byte high-order pointer(p) and 1-
byte low-order character(c). This is the method which uses
initial LZW algorithm without transformation to compress
Hangeul text file.

ITC-CSCC 2002

<Fig. 1> Compression table of LZW compression
algorithm
0] ASCU [8bit domain
%5lcode domain
%6 {Obit domain
511) i
Tnput string -
ou allocation i
domain 10bit
fvic) !
1024
hangenl:lbyte bt
2047 Alphabet:lbyte
3048
12bit
- fe
40% i
113bit
8151 i
ASCI String
Table No. Character ||CODE| prefix suffix
e L {2bvte) {1byte)
32 blank 257 G5(A) 66)B
65 A 258 | 66(B 67(C)
66 B 253 87C3 320
a7 C 260 32() 193(h
97 a 261 199(h 1770
177 i 262 | 177D 209(s)
199 } 263 | 209(7) 215
209 T 264 260 17730
219] 265 263 97(a)
266

<Table 1> Initial compression table
<Table 2> ASCII Character

As shown in Table 2, '+ and ‘=’ which are 2-byte
WanSeongHyeong Hangeul are not processed by 2-byte
unit and divided into high-order and low-order byte to
correspond with extended ASCII code value. As 2-byte
WanSeongHyeong Hangeu! is divided to be registered in
compression table, it cannot recognize Hangeul. When
processing the same input data size, it occupies more
compression table than alphabet and it results in low
compression rate.

2.2 WanSeongHyeong Hangeul compression
algorithm(Method 2)
To effectively compress 2-byte WanSeongHyeong

Hangeul, the code of 2-byte WanSeongHyeong Hangeul is
initialized at the high-order domain of initial compression
table.

<fig 2> compression table of WanseongHyeong 2-byte
Hangeul

Q ASCIT
X5 CODE Domain
2%

2350 Hangeul characters
code domairi

2606
2606
12bit
40%
4097
13bit
8191

As shown in Fig. 2, this method forms compression table

by 2-byte unit and can improve compression efficiency in
constructing WanSeongHyeong 2-byte Hangeul in the
compression table. But as 2350 WanSeongHyeong
Hangeul characters have to be constructed in initial
compression table, a dictionary for actual compression
starts from address 2606. For example, supposing initial
compression table for the string of “ABC &2
3l a 3= is formed as Table 3, the string "ABC 3t
g2 a 323 is stored in 2-byte compression table as
Table 4.

Table No. | ASCII/Hangeul String
{2byte) (2byte) Code prefix suffix
. L (Zbyte) (Zhyte)
32 blank 2606 A B
- 2607 B C
65 A
2608 C <32>
66 B 26001 <325 e
67 C 2610 b} 1
97 N w11 E <32>
— - 2612 2609[<3z>g)] B
PO I) S
2014 a iy
1300 = %15 BI0eE] | 7
2209 T 2616

<Table 3> Initial compression table
<Table 4> Compression table

As shown in Table 4, compression -efficiency is
considerably increased in Hangeul compression. In
alphabet, 1 byte is enough allocation for suffix for
compression table, but 2 byte has to be used to be allocated
due to Hangul initial table, so compression table size gets
bigger relatively, resulting in increase in compression file
s1ze.

On the other hand, this algorithm has to allocate the
domain for Hangeul code in compression table, dictionary
construction starts from address 2606. Thus, 12~13 bit
domain is used for compression space in compression table
and compared to Method 1 using 9~13 bit domain, it has
the disadvantage that the length of compression file is
increased because the length of compression string is
increased. In conclusion, when Method 1 and Method 2 are
compared in compression efficiency, trade off relation is
established in terms of the unit for processing Hangeul and
string length. In particular, it is necessary to decrease the
efficiency in compressing Hangeul/alphabet mixed text
string.

Accordingly, to effectively compress both
WanSeongHyeong Hangeul and alphabet, this study took
the advantages of Method 1 and Method 2. Prefix of
compression table allocates 2 byte to the pointer for
Hangeul and alphabet and suffix allocates 1 byte to
decrease the size of each element of the compression
table. Suffix is not used for the space allocating character,
but for the counter(A]<") part calculating the number of
character which corresponds continuously, when the
character read from input file is registered in prefix in order
to decrease the size of compression file.

ITC-CSCC 2002

3. Design of compression algorithm of
suggested WanSeongHyeong
Hangeul/alphabet mixed text document

3.1 Formation of compression table

To compress WanSeongHyeong 2-byte Hangeul and
ASCII character effectively, as the above Method 1,
suggested ELZW algorithm uses 2-byte pointer for high-
order 2 byte of prefix of compression table to express each
address of ASCII character and WanSeongHyeong 2-byte
Hangeul. Further low-oder 1-byte suffix of compression
table is used as counter to calculate the number of character
which continuously corresponds with the character
registered in read string and the internal of compression
table, when the character read from input file is aiready
registered in the compression table.

It is used as the domain to compress input file the element
from address 2606 to 8191, after alphabet and
WanSeongHyeong Hangeul are initialized in the high-order
domain of compression table. If either alphabet or Hangeul
is already registered in the compression table, the same
character is read from input file, and only one character
appears, not repetitive character which corresponds with the
address of compression table, the address of initialized
character is registered in prefix and not the address of
compression table after address 2606 which has the address
of relevant character and suffix is initialized as 0. When
this method is used, smaller-sized address than the variable
address of compression table can be outputted and
compression efficiency can get increased when
compression file is created from the data stored in the
compression table. The algorithm is as follows to register
input character in the compression table.
[The algorithm to input character in the
compression table]
while((ch = getc(input_file)) != EOF)

{

search ch in TABLE;

if{ch is not exist in current_index of TABLE) {

Set address of ch in prefix of TABLE[current_index];

Set 0 in suffix of TABLE[current_index];
}

else {

move position to existed address of ch in TABLE;

while((ch = getc(input_file)) != EOF) {

if{ ch is equal to TABLE[position]) {
increment position;

register

increment count;

Jelse {

iffcount > 1) {

Set address of ch in prefix of TABLE[current_index];
Set count in suffix of TABLE;

Jelse {

Set address of ch in prefix of TABLE[current_index];
Set 0 in suffix of TABLE;

increment current_index;

String
Code prefix suffix
(hyte) | (Ibyte) |

2606 65[A] 0
2607 87[B]]
2608 68[C] G
2609 32 0
2610 C3D1[g G
2611 BIDB{E] 0
2612 2609 3
2613 97la) 0
2614 2810 2
2615 BOFA[=] 0
2615 32 C
2617 2606. 3
2618

<Table 5> Compression Table

That is, the algoritbm which registers string in the
compression table of Table 5 first reads character sequently
from input file to the end of the file to be registered in the
compression table. If the read character is not registered in
the compression file, it registers the address of relevant
character in prefix of compression table and sets suffix of
counter field as 0.

But, if relevant character is already registered in certain
location within the input table, it repeats the process of
comparing the address of character in next location of
compression table by reading next character from input file
until they do not correspond. If they do not correspond, the
address which first corresponds and corresponding counter
will be stored in prefix and suffix of table.

To obtain more efficient compression rate, it is good to
remove and pack unnecessary bit which exists in the
compression table. For example, in Method 2, if alphabet is
stored in suffix, only low-order byte may be used. But
when compression file is created, both low-order and high-
order byte are outputted and compressed file contains
unnecessary 1 byte. It is because the data registered in the
compression table is not packed at all and all of them are
outputted. Thus, when the data with unnecessary bit is
outputted as compression file in compression table, it is
desirable to remove the unnecessary bit.

[Algorithm to from the
compression table]

remove unnecessary bit

index = 2606;
. packing()
{

while(TABLE SIZE > index && index <= LIMIT) {
read an element from TABLE[index];

switch(prefix) {

ITC-CSCC 2002

case 'table_address' : write prefix to output_file;
write suffix to output_file;
case 'english_address' :
write high byte of prefix to output_file;
case 'hangeul_address': write prefix to out_file;
}
/
}

3.2 Decryption of compression file

The decryption of compression file uses completely
reciprocal concept to compression. In other words, at first,
read data from compression file to form original
compression table and decrypt original file from the
compression file. The decryption algorithm to form
compression table from the compression file is as follows.

[Decryption algorithm to form compression table from the
compression]
index = 2606;

creat_compress_table()
{
while((ch = getc(compressed_file)) != EOF) {
switch(ch) {
case 'table_address’ :
TABLE;

write table address to prefix of

write count to suffix of TABLE,
case 'english_address': write english_address to prefix of
Table;
write 0 to suffix of TABLE;
case 'hangeul_address': write english_address to prefix of
Table;
write 0 to suffix of TABLE;

}
}
/

The algorithm to decrypt into original file before
compression from the compression table is as follows.

[The algorithm to decrypt into original file before
compression from the compression table]
current_index = 2606;

decompress()

{
while(read record in TABLE[current_index] <= LIMT) {
iftsuffix of TABLE[index] == 0)
write prefix of TABLE[current_index] to input_file;
else {
save current_index to varialble tmep;
call decompress(current_index) until reach to temp;

N S

<Fig. 3>The process of decryption from the compression
table

address 2606 %607 2608 2608 2510 26 2612 2613 2614 2615 2616 A7
Compre

sson A B C <32 # % 2609 a 2610 3 <32 2608
Table

Repstation 6 G g g g ¢ 3 3 2 Y i 3

<32> o A

i 2 B

¥ c

<32

t‘J

<> - B

& a

2
1V. Conclusion
Existing WanSeongHyeong Hangeul compression

algorithm extends and improves LZW algorithm to fit into
processing Hangeul.

To solve the disadvantage of existing Method 1 and .
Method 2, this study did not input next character in suffix
of the compression table and used counter to calculate the
number of repeated character within the compression
table. Finally the following conclusion is drawn.

(1)By inputting the address of alphabet or Hangeul only in

high-order suffix of compression table, the problem of
Method 2 which divides Hangeu! into high-order byte and
low-order byte is solved and compression efficiency is
increased.

(2)By using low-order suffix of compression table as the
counter of repeated character within compression table, the
problem of increasing overall size of compression file is
removed, compared Method 1 and 2.

(3)When only one character registered after address 2606
after initialized table corresponds, relevant address is not
used and initialized address is registered in compression
table. It decreases address size in creating compression file.

In conclusion, ELZW algorithm developed in this study

has excellent compression rate, compared to existing
methods to compress WanSeongHyeong Hangeul and
alphabet/Hangeul ~mixed text file. In reality,
WanSeongHyeong Hangeul has been increased by 8% in
compression rate, compared to commercialized LZWI
compression program and by 15%, compared to LZW?2.

References

[1] Jin-uk Jung, “Compressing Coding & secret Coding on
Real-time Writing a good paper,” KOFST. on General
Writing, Vol. 17, no. 6, Nov. 2000

[2] Sung-jo Han, Compressing Coding Method secret for
WanseongHyeong Hangeul, KOFST. On General Writing,
Vol. 20, No.9, Sep 1993.

ITC-CSCC 2002

