An Implementation on the High Speed Blowfish

.Jong Tae PARK and Kang Hyeon RHEE

School of Electronics, Information & Communications Eng., Chosun Univ.,
501-759, Seoseok-dong 375, Dong-gu, Gwangju city, Korea

{pijt, khrhee}@vlsi.chosun.ac.kr
http://multimedia.chosun.ac.kr
Tel : +82-62-230-230-7066
Fax : +82-62-233-1120

Abstract

Blowfish is a symmetric block cipher that can be used as a
drop-in replacement for DES or IDEA. It takes a variable-length
key, from 32bit to 448bit, making it ideal for both domestic and
exportable use. This paper is somewhere middle-of-the-line,
where this paper made significant tradeoffs between speed, size
and ease of implementation. The main focus was to make an
implementation that was usable, moderately compact, and would
still run at an acceptable clock speed. For the real time process of
blowfish, it is required that high-speed operation and small size
hardware.

So, A structure of new adders constructed in this study has all
advantages abstracted from other adders. As for this new adder,
area cost increases by 1.06 times and operation speed increases by
1.42 times.

1. Introduction

Cryptosystems are increasingly important in electronic
communication, seeking to ensure that information is neither
meaningful nor useful to an unauthorized receiver.

Cryptography is widely applied to protect digital data.

Nowadays, there are many kinds of cryptography and most of
them require a secret key to encode digital data. After applying a
cryptography algorithm to our digital data, others can't regain the
original data easily without the secret key.

Then, the private data are under protection.

Blowfish is a symmetric block cipher that can be used as a
drop-in replacement for DES or IDEA. It takes a variable-length
key, from 32 bits to 448 bits, making it ideal for both domestic
and exportable use. Bruce Schneier designed blowfish in 1993.

As a fast, free alternative to existing encryption algorithms.
Since then it has been analyzed considerably, and it is slowly
gaining acceptance as a strong encryption algorithm.,

The Blowfish algorithm has many advantages. It is suitable and
efficient for hardware implementation. Besides, it is unpatented

and no license is required.

The elementary operators of Blowfish algorithm include table-
lookup, addition and XOR. The table includes four S-boxes
(256x32bits) and a P-array (18x32bits).

Blowfish is a cipher based on Feistel rounds, and the design of
the f-function used amounts to a simplification of the principles
used in DES to provide the same security with greater speed
and efficiency in software. The block ciphers Khafre and CAST
have somewhat similar rounds.[1][2]

In this paper, the scheme of Blowfish has been designed to
completely and correctly implements the algorithm with a focus
on case-of-design and ease-of-use without sacrificing too much
speed or size. Certainly better implementations could be used
and my existing circuit could definitely be optimized.

For the real time process of blowfish, it is required that high-
speed operation and small size hardware.

So, A structure of new adders constructed in this study has all
advantages abstracted from other adders.

2. A Theoretical Background of Blowfish

Unlike DES, Blowfish applies the f-function to the left half
of the block, obtaining a result XORed to the right half of the
block. Originally, I had said that this departure from convention
might cause confusion in reading the description of Blowfish.

However, upon further reflection, 1 think that it is really DES
that is creating confusion; the time sequence of events should
move from left to right (particularly in a design that is otherwise
big-endian); this is generally what happens in more recent
designs, such as the AES candidates, and particularly in ciphers
with unbalanced Feistel rounds.

Blowfish is a variable-length key, 64-bit block cipher. The
algorithm consists of two parts: a key-expansion part and a
data-encryption part. Key expansion converts a key of at most
448 bits into several subkey arrays totaling 4168 bytes.

Data encryption occurs via a 16-round Feistel network. Each

ITC-CSCC 2002



round consists of a key-dependent permutation, and a key- and
data-dependent substitution. All operations are XORs and
additions on 32-bit words. The only additional operations are four
indexed array data lookups per round.[3]{4]

The Data flow graph of blowfish block cipher is shown in Fig. 1.

| Plaintext |

113 iteration

| Ciphertext |

Fig. 1. Data flow graph of Blowfish block cipher

Blowfish consists of sixteen rounds. For each round, first XOR
the left half of the block with the subkey for that round. Then
apply the f-function to the left half of the block, and XOR the
right half of the block with the result. Finally, after all but the last
round, swap the halves of the block. There is only one subkey for
each round; the f-function consumes no subkeys, but uses S-
boxes that are key dependent.

Afier the last round, XOR the right half with subkey 17, and
the left half with subkey 18.

First dividing XL into Four 8bit quarters calculates F(XL). And
then )

F(XL) = ((S;[box1] + S;[box2}) + XOR S3[box3]) + Sy[box4]

The Function F is shown in Fig. 2.
8bits 32bits

32bits

32bits

32bits
@ 32bits XOR

8bits

Sa-Box4
1 320bits adder

Fig. 2. Function F

3. Realization of Blowfish

In any implementation, there are several separate circuit pieces
that can be identified. First is the encryption core that implements
the actual Fiestel network. Second is the function F(xL) that crypt
relies on for each round of the Fiestel network. Third is a

generated array of sub-keys, called the p-array, which is also
used by crypt each round. Fourth are the four key-dependent
sboxes that are read by the F(xL) function also each round. Fifth
would be and control logic necessary to initialize the p-array
and sboxes.

3.1 Encryption Core
Blowfish is a Feistel network consisting of 16 rounds. The
input is a 64-bit data element.
Encryption can be expressed as
Input : X(64bit data block plaintext)
Divide X into two 32bit halves X; and Xy
ForI=1to16 X =X, ®P
Xp=FX ) ® Xgp X, Xg
End for
Xy Xg Xp=Xp &Py

XL= XL © Pyg Recombine XL and XR
Output : X(64bit data block ciphertext)
The Block diagram of encryption blowfish is shown in Fig. 3.

Fig. 3. Block diagram of encryption blowfish

3.2 The f-function

Blowfish uses four S-boxes. Each one has 256 entries, and
each of the entries is 32 bits long.

To calculate the f-function: use the first byte of the 32 bits of
input to find an entry in the first S-box, the second byte to find
an entry in the second S-box, and so on. The Block diagram of
f-function is shown in Fig. 4.

sbpu0 dataisl:o)
abfxl_datel2l:0] ]

= £x1{31:0
22 dmeni21:0}
|- N 7 T

3110 i

spaxd addr17:0)

<l

Fig. 4. Block diagram of f-function

3.3 Subkey generation

ITC-CSCC 2002



Begin by initializing subkeys 1 through 18, followed by
elements zero through 255 of the first S box, then elements zero
through 255 of the second S box, all the way to element 255 of
the fourth S box, with the fractional part of pi. The most
significant bit of the fractional part of pi becomes the most
significant bit of the first subkey.

Then, take the key, which may be of any length up to 72 bytes,
and, repeating it as often as necessary to span the entire array of
18 subkeys, XOR it with the subkey array contents.

Then execute the Blowfish algorithm repeatedly, with an initial
input of a 64-byte block of all zeroes as plaintext input. After each
execution, replace part of the subkeys or S boxes with the
successive outputs of Blowfish, in the same order as the digits of
pi in binary (or hexadecimal) form were placed in them; after the
first iteration, replace subkeys 1 and 2; after the tenth iteration,
replace the first two entries (0 and 1) in S-box 1; and so on.

The Block diagram of P-array is shown in Fig. 5.

T R L It

RAAA0AAnARANAAANRE

Ao €y Y ¥

Fig. 5. Block diagram of P-array

3.4 S-box

This paper used four different S-boxes instead of one S-box
primarily to avoid symmetries when different bytes of the input
are equal, or when the 32-bit input to function F is a bytewise
permutation of another 32-bit input. I could have used one S-box
and made each of the four different outputs a non-trivial
permutation of the single output, but the four S-box designs is
faster, easier to program, and seems more secure. The black
diagram of S-box is shown in Fig. 6.

clk :

Lt {2500 I

V

Fig. 6. Block diagram of S-box
4. The Proposed 32bit Adder
As a way to realize adders, there are Ripple Carry Adder,
Conditional Sum Adder, Carry Look Adder, and Carry Select
Adder. A structure of new adders constructed in this study has all

advantages abstracted from other adders. Its size is a little
bigger than Carry Select Adder, but it processes faster. The
32bit adder used in this study consists of three ripple carry
adders, one 4-bit mux, and one 1-bit mux to make 8bit adders.
The block diagram of 8bit adders is shown in Fig. 7.

RCAY_AB

o P
[ wa a4 X118
PN 3 . P
L s, 2
— 7
RCA1_4B
[ e MUX1_48
seu
o
| e e bt ol
1.5 ha
= 1.8
RCA1_4B
B_.k— © GND
e o] zan
Letd wsee ad 12
4

VDD

11

Fig. 7. Block diagram of 8bit adder

32bit adders were constructed with seven 8bit adders and
three 8bit MUX. As of movement, one adder was for input = 0
and the other was for input = 1. One of them was selected in
terms of the previous value of carry. To construct 32bit, each
addition of 8bit was completed and the output carry was
connected to input 8bit carry. The output of sum was made
through 8bit MUX. The block diagram of 32bit adders proposed
in this paper is shown in Fig. 8.

]
o e
P {ara >y P qara
s u
PiCIAE [ ) 1
< X
[ gy - e
R, P -t"l ol | o [ooe B | P oy coaf 23
o
e 2 - wa
L w s
e e
c DY i
8 wa rp. e L{a
ke iva - o = omd La o B
e lrea e i { e Py
Lo [ 70
1) w N

Fig. 8. Block diagram of 32bit adder

5. Resulting and Examination
As for this new adder, area cost increases by 1.06 times and

operation speed increases by 1.42 times and operation
frequency increases by 1.15 times.
This study examined the adders constructed in many ways as
shown in Table 1.

Table 1. Compared results with the conventional and

proposed adder.
Ripple Carry Select | New Designed
Carry Adder Adder Adder
Frequency 28.5 50.2 57.7
Timing 64.08 32.55 22.88
Gate count 64 111 118

ITC-CSCC 2002




The synthesis result of proposed 32bits adder is shown in Fig. 9.
The test bench of blowfish and The Final Block of blowfish are
shown in Fig. 10, Fig. 11.

Fig. 11. Final Block of blowfish

In this paper, Simulation and synthesis of all circuits were
performed by synopsys design tool.

Synopsys VSS was used for timing of the system. The
maximum moving speed was 51.232Mhz and moving speed of
stable state was about 50.341Mhz.

6. Conclusions
My implementation of Blowfish has been designed to

completely and correctly implement the algorithm with a focus on
ease-of-design and ease-of —use without sacrificing too much

speed or size. Certainly better implementations could be used
and my existing circuit could definitely be optimized.

To increase speed of the system, a new adder method is
designed. To solve this problem, a new adder was designed, in
which Ripple carry adder is combined with Carry Selector
adder to consider efficiency of area and high speed of
multiplication respectively. As for this new adder, area cost
increases by 1.06 times and operation speed increases by 1.42
times and operation frequency increases by 1.15 times.

Reference

[1] E. Biham and A. Shamir, Differential Cryptanalysis of the
Data Encryption Standard, Springer-Verlag, 1993.

[2] J. Deamen, R. Govaerts, and J. Vandewalle, "Block Ciphers
Based on Modular Arithmetic," Proceedings of the 3rd
Symposium on State and Progress of Research in Cryptography,
Rome, Italy, 15-16 Feb 1993, pp. 80-89.

[3] GOST 28147-89, "Cryptographic Protection for Data
Processing Systems,” "Cryptographic Transformation
Algorithm," Government Standard of the U.S.S.R., Inv. No.
3583, UDC 681.325.6:006.354. (in Russian)

[4] R.C. Merkle, "Method and Apparatus for Data Encryption,”
U.S. Patent 5,003,597, 26 Mar 1991.

Jong Tae PARK was born in Haenam,
Korea, on March 22, 1970. He received
the B.S degree in the Department of
Electronic Engineering from Chosun
University, Kwangju city, Korea, in
1998. He is currently pursuing the Ph.D.
degree in the Department of Electronic
Engineering at Chosun University. His
interests include VLSI architecture design.

Kang Hyeon RHEE received the
Ph.D. degree in the Department of
Electronic  Engineering at Ajou
university, Soowon, Korea, in 1991,
He is presently professor at School of
Elec. And Info-Comm. Eng., Chosun
University, Kwangju city, Korea since
1997. Also now, he is a chairman of
Multimedia session in Institute of
Electronic Engineering Korea and a vice president of Institute
of Webcasting Internet TV of Korea. His interests include
multimedia ASIC/VLSI system design, Internet
Broadcasting/TV systems and Bio-matrix.

ITC-CSCC 2002



