Agents for Autonomous Distributed Secret Sharing Storage Systrem

Daisuke Hayashi, Toshiyuki Miyamoto, Shinji Doi, and Sadatoshi Kumagai
Department of Electrical Engineering, Faculty of Engineering
Osaka University, Japan
Phone: +81-6-6879-7694, Fax: +81-6-6879-7263

Abstract: For mission-critical and safe-critical opera-
tions of medical information, financial, or administrative
‘systems, a reliable and robust storage system is indis-
pensable. The main purpose of our research is to develop
a high-confidential, reliable, and survivable storage sys-
tem.

1. Introduction

For mission-critical and safe-critical operations of
medical information, financial, or administrative sys-
tems, a reliable and robust storage system is indispens-
able. A conventional storage system, such as a RAID
system, can guarantee its survivability only against for
disk crashes of several disk drives. For security improve-
ment, a file system, TCFS (Transparent Cryptographic
File System)[1], has been proposed, in which the secu-
rity is guaranteed by means of the DES (data encryption
standard) algorithm. But this may pose a risk of being
stolen data because a encrypted file can be decrypted if
the encryption key is known. Moreover, TCFS does not
distribute an encrypted data over servers. It isn’t suit-
‘able for safe-critical systems, because it does not guar-
antee its survivability against for failures such as disk
crashes.

A simple way to increase the survivability is storing
data on several computers connected with a network.
But in this way the confidentiality would be decrease.
An encoding technology, called (k,n) threshold scheme
[2}, would be useful to increase both of the survivabil-
ity and the confidentiality. The (k,n) threshold scheme
generates n cryptographs, each of them is called a share,
from an original data, and restores the original data
from k shares. We are developing an autonomous dis-
tributed storage system by using the (k,n) threshold
scheme[3].! In the system, n shares encoded from an
original data are stored on distributed storage nodes
(computers) connected with ultra high-speed network.
If the value k and n are chosen appropriately, the stor-
age system is sufficiently confidential, since no one can
restore the original data from k — 1 or less shares. And
it is sufficiently survivable, since even if n — k shares
‘have been lost, we can restore the original data from
remaining k shares.

We are developing a multi agent system for realizing
the autonomous distributed storage system. Each agent
offers basic storage services, such as storing, retrieving,
updating, and so on, on a distributed storage node, and

I This research project has been carrying out with Kochi Uni-
versity of Technology and Iseikai Hospital under a support of
Telecommunications Advancement Organization of Japan.

is an interface of the storage system to users. The (k,n)
threshold scheme is survivable and confidential by itself.
But if the multi agent system is brittle, the autonomous
distributed storage system could not be a survivable and
confidential storage system. In this paper, we discuss a
Petri net model[4] of the storage system, which will be
useful to analyse the behavior of the system.

2. Threshold Scheme
2.1 Algorithm of Threshold Scheme

Let S be the secret information, p be a prime number
greater than S, and GF(p) be a Galois Field of p. Users
must determine numbers k and n (0 < k < n), then we
can calculate n shares, wy, - -+ , wy,, from S by following

expression.
w1 1 o a% s a'i‘l S
wa 1 a2 o2 - o3l | mn
=|l. | (modp) (1)
Wy, 1 an o2 - of | lre
where r;j(j = 1,2,--. ,k — 1) are random numbers on

GF(p), and o, that is called an ID of share w;, has
following relations.

ai=a, ag=0a?,--+ ,a, =a” (2)

When decrypting the original data, we must collect
k shares, wj,,wj,, -+ ,wj,. The original data can be
decrypted by following expression.

S 1 ot alk—1)j1q 1 wj,
i 1 a2 alk—1)i2 w;

= . (mod p) (3)
ool L1 o alk=1)ik wj,

where o+ is the ID of share wj,.

3. Storage System Using Threshold
Scheme

Fig.1 shows the image of the autonomous distributed
storage system. This storage system is a multi agent
system that consists of client agents and server agents.
These exist on storage nodes bestrewing over network.
We aim to realize the high-confidential, high-reliable and

_ high-survivable system by coordinations among agents.

Any client agent can connect with any server agent,
and can ask a request for the server agent.

A server agent, that received a store request from a
client agent, encrypts a data, and sends shares to the

ITC-CSCC 2002

Sgent

Figure 1. Storage System

appropriate server agents according to a storing policy.
The storing policy is examined in the next chapter. The
server agent, that received the share, stores it into its
local disk, and prepares for a next request.

A server agent, that received the restore request from
a client agent, collects more than k shares from other
servers, and decrypts the original data.

Agents always operate based on their autonomous
judgments. For example, in case where a client agent
loses communication link with a server agent because of
some reasons such as a breakdown of the network or a
crash of the server, the client chooses another communi-
cable server. In this sense, we can construct very robust
storage system.

Moreover it is possible by use of agent technologies
that agent can regenerate lost share automatically or
can find altered share and repair it. In this sense, we
can construct very reliable storage system.

On the other hand, agent technologies may be also
useful for load-balancing.

In the system that stores data as the need arises, such
as medical information system and document database,
its scalability is very important factor. In our system, we
can make a server agent “plug-inable”. Since it enables
us to change the scale, easily our system is also useful
for these kinds of applications.

4. Evaluation of Storing Policy

We may say that the confidentiality and the reliabil-
ity are affected by how to store n shares generated by
threshold scheme.

Consequentially, we consider some storing policies
and we experiment them on survival rate and disk’s us-
age rate.

4.1 Storing Policy

We considered the following four storing policies.

(1) Choose n servers at random
In this policy, n shares are put into n servers at random.
Let z be size of a share file, and n be the number of
share files. Then the traffic to store this file over the
netwowrk is nz under an assumption that all servers
are completely connected and the length between any
two nodes is 1. We call this polity by “Random”.

(2) Put a share into requested server and
choose n — 1 servers at random
A share is put into the server that receive store request,
and other shares are selected at random. In this policy,

the traffic is described as {(n — 1)z. We call this policy
by “Self-Random”.

(8) Choose servers by weighting probability
Probability of choosing the server is weighted by de-
pending on its free space. Since this policy can balance
each server’s free space, it has a beneficial effect in case
where server’s capacity isn’t even. But this policy needs
to check capacity of each server, so its traffic costs more.
Denoting the traffic of communication for checking ca-
pacity by y, the traffic is nz + 2y. We call this policy
by “Capacity-Weighted”.

(4) Choose same n servers
This policy always chooses same n servers. We can store
efficiently in a sense since we can choose servers depend-
ing on network topology. We call this policy by “Fixed”.

4.2 Experiment

We store 1000 data, and its size is randomly selected
between 1 and 100 (size of share is same as original
data). We experiment about case of losing shares by
crashing hard disk of server, and calculate survival rate
for four policies. Let n =5, k = 3, s = 10. Let x be
the number of servers that breaks by some reason such
as a disk crash. We compare survival rate of worst case
by generating 0.1 x 10C; test patterns at random. The
worst survival rate is defined by the following expression.

. Np
min - x 100 (%) (4)

where N is the number of data, N,, is the number of data
that there exist more than k shares under a pattern p,
and P is the set of patterns. In our storage system,
there may exit multiple clients, but we paid attention
to one client, and we assumed that a client always sends
request to the same server.
CASE]1) Capacities of servers are even

We experiment in case where the capacity of each servers
is 100000. The results are presented in Fig.2. In this

.- Randam —>—]
SelfRandom -~-x---
% e
CapacityWeighted & |
=2
o
E i
g 40 |
a 5
20 ' -
o \ A - "
v 2 3 4 s 10

the number of broken servers

Figure 2. Worst Survival Rate (Capacity 100000) .

case, the results of Random and Capacity-Weighted al-
most equal. But the result of Self-Random and Fixed is
worse in survival rate.

CASE2) Capacities of servers are not even
We experimented on two cases where a range of server’s
capacity differs: (30000, 80000), and (50000, 100000).
The number of data and its size are equal to CASEL

ITC-CSCC 2002

Therefore approximately it requires 50000. In the first
case, some servers may overflow. When a server uses up
the disk space, another server is selected from remaining
servers by the same policy.

each case, and Table.1 shows usage rates of servers’
disk for the first case. Let UR; be i(i = 0,1,--- ,9)th
server’s usage rate, C; be the server’s capacity and U; be
the server’s usage. Then UR; is calculated by following
by expression.

UR; = % x 100 (%) (5)

As Fig.3-4 indicate, the second case is similar to
CASE1l). But in the first case, survival rate of Ca-
pacityWeighted is reduced. And as Tablel indicates,
servers’ usages rate of CapacityWeighted is balanced,
but servers’ usage rates of the other policies aren’t bal-
anced, and some of the servers overflow.

In terms of survival rate, Random is the best policy
and SelfRandom is the second best policy in first case.
But when the SelfRandom server overflows, SelfRandom
‘don’t perform as SelfRandom policy itself. Therefore its
policy can’t be used at the first case.

We considered the survival rate, the usage rate, and
the load to the network as the comparative object of
the storing policy. Since the survival rate is reduced af-
ter some of servers overflow, averaging usage rate keeps
survival rate high. But the results of experiments show
that Random servers keep high survival rate in spite
of some overflows. Absolutely if the servers’ capacities
are reduced further, it is sure that the survival rate of
Random is reduced. But the system where the server’s
capacity is severe shortage wouldn’t be expected actu-
ally. So far, when using CapacityWeighted, not only
the traffic to store one file is bigger than Random, but
also the load to the network around the server that have
bigger free space increases.

Consequently, we determine to use Random as the
storing policy.

Table 1. Usage Rate(Capacity 30000-80000)

Random | SelfRandom | Fixed | Capacity
srv0 99 99 0 66
srvl 42 34 0 51
srv2 46 49 23 55
srv3 77 56 43 51
srvd 78 45 26 63
srvd 81 44 99 63
srvb 72 53 99 60
srv7 39 48 81 61
srv8 57 47 99 61
sTv9 85 75 92 53

100 4 T ’ andomn ————
*\ SelFandom
8o N Fixed - .
! CapacityWeighted
= | *
E-] 60 {» -
[
g 40 }— R
2 {
20 = -
+
o " L ; : I
1 2 3 4 5 6 7 8 9

the number of broken servers

Figure 3. Worst Survival Rate (Capacity 20000-70000)

- v r v T =)
100 - - Sellganggen; S
- 80 k- : CapacityWeighted 4
=
=
o 60 .
- .
E S
§ 40 b . R
20 - -1
o . . . ' b A + i
1 2 3 4 5 6 7 8 9 10
the numper oi broken servers
Figure 4. Worst Survival Rate (Capacity 50000-100000)

5. MAN model
5.1 The Model of the System

To describe a behavior of each agent, we have been
proposed a description language for multi agent systems,
called the Multi Agent Net (MAN) [5], and developed
a simulation environment of MAN. With the simulation
environment, we can easily construct and simulate the
multi agent system.

As Fig.5-9 indicate, we modeled the five basic file-
handlings (store, delete, restore, update.and refer) using
MAN.

Client
start

receive
(A sharefinfo.)
send store request

Figure 5. Model for Store Process

ITC-CSCC 2002

Client Server
0 e 8 T
O:::: delote request m ZE

wal;‘far [send) _——Né: e
a / . te
i o % s
end _{ W"\i
eta n:ll.] E_.

Figure 6. Model for Delete Process

Client Server
() start receive I I receive
send rastore request request :E_, %
wm fory 2

@i 5
‘_P:__(—P_ f[% research
e ; ? %
res ?:be 'eﬁ oive - '%
\ ":,? 3 o EE"JI!
ife [ﬂ!ﬂﬁ»}.‘ ~
[egeivel. "U’\

. share |
b g

% ﬁlé‘r‘e‘g“é‘ést

Figure 7. Model for Restore Process

receve
request

Eﬁl@

Figure 8. Model for Update Process

Figure 9. Model for Refer Process.

6. Conclusion

In this research, the agent for the design of the au-
tonomous distributed storage system guaranteed confi-
dentiality, reliability and survivability was developed.

We define five file-handlings of this system, and model
them with MAN.

Furthermore, we simulate this multi agent system by
using the MAN simulation environment to check opera-
tion of system.

Because the present agent net model just simulates
operations and the encryption of data, in future, we
need to include the actual file-handling library offered
from the Kochi University of Technology. Moreover,
SSL/TLS[6] may improve a security of communication
between client agents and server agents. As for a toler-
ance for alterations, message digest algorithms such as
MD5[7] may be useful.

Since each agent behaves asynchronously and concur-
rently, the whole state space of the system we propose
would be immense, and it is not easy to comprehend it.
To overcome the problem, we are going to use a reacha-
bility analysis method of Petri nets[4] for a verification
of our storage system.

References

[1] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Per-
siano. “Design and Implementation of a Transparent
Cryptographic File System for Unix”, Proceedings of
the Freeniz Track: 2001 USENIX Annual Technical
Conference, pp.199-212, Boston, MA, June 2001.

[2] A. Shamir. “How to Share a Secret” communication
of the ACM, Vol. 22, No. 11, pp.612-613, 1979.

[3] S. Funahashi, M. Fukumoto and Y. Kikuchi. “Imple-
mentation of a command for data distribution using
SSS”, IPSJ Distributed System and internet Manage-
ment technology 2001 SIG, pp.27-32, 2001.

[4] T. Murata. “Petri Nets: Properties, Analysis and
Applications” , Proceedings of the IEEE, Vol. 77, No.
4 pp-554-580, April, 1989.

[5] T. Miyamoto and S. Kumagai. “A Multi Agent Net
Model and the Realization of Software Environment”
Proceedings of Workshop of Petri Nets to intelligent
system development with 20th International Confer-
ence on Application and Theory of Petri Nets, pp.83-
92, 1999.

[6] The TLS Protocol Version 1.0, IETF Internet-
Draft, http://www.ietf.org/internet-draft/draft-ietf-
tls-rfc2246-bis-00.txt :

[7] R. Rivest, MIT Laboratory for Computer
Science and RSA Data Security, Inc. “The
MD5 Message-Digest Algorithm”, April 1992.
http://www.ietf.org/rfc/rfc1321.txt.

ITC-CSCC 2002

