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Abstract; In this paper, the old Fourier-Motzkin method
(abbreviated as the old FM method from now on) is first
modified to the form which can derive all minimal vectors
as well as all minimal support vectors of nonnegative
integer homogencous solutions (i.c., T-invariants) for a
matrix equation Ax=b=0"', de Z™ and beZ™,
of a given Petri net, where the old FM method is a
well-known and direct method that can obtain at least all
minimal support solutions for Ax=0™' from the
incidence matrix A€ Z™" . Secondly, for Ax=b#0"",
a new extended FM method is given; i.e., all nonnegative
integer minimal vectors which contain all minimal support
vectors of not only homogeneous but also inhomogeneous
solutions are systematically obtained by applying the above
modified FM method to the augmented incidence matrix
A=[A,-b] € Z™™V st AX=0™'. However, note
that for this extended FM method we need some criteria to
obtain a minimal vector as well as a minimal support
vector from both of nonnegative integer homogeneous and
inhomogeneous solutions for Ax = b . Then those criteria
are also discussed and given in this paper.

1. Introduction

Petri nets are one of promising models applicable to
discrete event systems and concurrent systems. Many
properties of systems modeled by Petri nets are obtained by
solving a matrix equation Ax=5 . An arbitrary non-
negative integer solution x&Z™ of a matrix equation
Ax=b is expressed or genecrated at level 4 (level 5,
resp.) by each minimal support vector (each minimal vector,
resp.) of both of nonnegative integer homogeneous and
inhomogeneous solutions. The level is defined due to
attitude of those generating vectors and the expansion
cocfficients. Those generating vectors are called the
generators of an arbitrary solution. The analyses of Petri
nets become efficient by executing of each generator of a
solution or a set of solutions with certain characteristics.
Therefore some systematic and efficient methods to obtain
all generators of solutions at level 4 or level 5 are
necessary. .

Then the Fourier-Motzkin (abbreviated to FM) method
is adopted as a direct method in this paper. However, the
old FM method [1], [3] can directly generate at least all

minimal support vectors, but not, in general, all minimal
vectors of nonnegative integer homogeneous solutions for
Ax=b=0"" from the incidence matrix AeZ™" ,
where the rank condition for a submatrix of the incidence
matrix A is used to find only minimal support vectors.
Therefore the old FM method has not been applied to
derive all minimal vectors, i.e., all minimal T-invariants, of
nonnegative integer homogeneous solutions for an
arbitrary net Ax = b = 0™ . Another drawback of the old
FM method is as follows: Even if the old FM method is
applied to the augmented incidence matrix 4 =[4,-5],
ie,to AY =0™ only a part, not all, of minimal support
vectors of nonnegative integer inhomogeneous solutions
for Ax=5b=0™" are just obtained, in general. This is
due to the fact that a part of nonnegative integer minimal
support vectors (i.e., a part of particular solutions at level
4) of inhomogeneous solutions for Ax=5b#0™" are
corresponding to the nonnegative integer minimal, but not
minimal support, solutions with the (n+1) -th wunity
element on ¥ € Z"™! for AX =0"[4], [5]. Then, for
some nets, it will happen that a part of nonnegative integer
minimal support solutions at level 4 for Ax=5b=0""
are not obtained by applying the old FM method to
A=[A4,-b].

From the above facts, in this paper, we will give a new
FM method which is doubly extended from the
well-known and old FM method, where all minimal vectors
(i.e., the level 5 generators) which contain all minimal
support vectors (i.e., the level 4 generators) of not only
nonnegative integer homogeneous solutions but also
nonnegative integer inhomogeneous solutions of Ax =>4
are systematically derived.

2. Preliminaries

The following definitions with respect to solutions of
Ax = b are used in this paper. [2]

@® A homogeneous solution of Ax=5; an nxl
matrix x is called a homogeneous solution or a.
T-invariant, where A is an mx»n matrix and b =0""
isthe mx1 zero matrix.

©@ An inhomogeneous solution of Ax=b; an nxl
matrix x is called an inhomogeneous solution, where A
is an mxn matrix and b # 0™ is the nonzero mx1
matrix.
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® A partticular solution of Ax =b; at each level, an
inhomogeneous solution x of Ax=b is called a
particular solution if and only if x is never expressed by
the sum which contains at least a homogeneous solution.
@ A basic particular solution of Ax =5 a particular
solution x of Ax=>5 is called a basic particular
solution if and only if X is never expressed by the sum
together with the other particular solutions of Ax=25.

Although a basic particular solution is always a particular
solution, the converse is not always true.
® Support of xeZ™ ; the set of transitions (elements,
resp.) corresponding to nonzero entities in a T-invariant (a
solution, resp.) x>0"' is called the support of a
T-invariant (a solution, resp.) x>0™' and is denoted
support (x) . A support is said to be minimal if no proper
nonempty support of the support is also a support.
®Let x(i)be the i-th element of x€Z™ . Minimal
vector; a vector (T-invariant, resp.) x = (x(i)) € Z™ is
said to be minimal if there is no other vector (T-invariant,
resp.) X, =(x,())eZ™ such that x, (i) Sx(i) for all
elements i € {l,---,n} (all transitions ¢, € T, resp.).

See [2] for Petri net terminology.
@ A minimal support (i.., an elementary) vector; given a
minimal support of a vector, there exists a unique minimal
vector corresponding to the minimal support. We call such
a vector a minimal support (i.e., an elementary) vector.

Every minimal support (i.e., every elementary) vector is

a minimal vector, but the converse is not always true.

3. Generators (U,,V,) for L=3,45

The level is divided into five according to the attitude of
the generating vectors and the expansion coefficients. The
generators at level 3.4, and 5 are as follows. [4]

Level 3. u, €U, = { u e Q7| nonnegative rational
number minimal support vectors of Ax=0"'}, v, e

V,={v , € Q7| nonnegative rational number minimal
support vectors of Ax =b# 0™},

Level 4. u, €U, = { u e Z™| nonnegative integer
minimal support vectors (minimal support T-invariants) of
Ax= 0"}, v, eV,={ v, e Z| nomnegative
integer minimal support vectors (basic particular solutions)
of Ax=b+0™}.

Level 5. u, €U, = {u, € Z™ | nonnegative integer
minimal vectors (minimal T-invariants) of Ax = 0™},
v,eV, = { v, €Z?| nonnegative integer minimal
vectors (particular solutions) of Ax=b=0™ }.

Here, u, €U, is obtained by multiplying some non-
negative integer from u, € U, . However, v, €V, is not
obtained from v, €V, by the same way.

It is known that a minimal, but not minimal support,
T-invariant (#, e U;\U,) is expressed by nonnegative
rational number weight linear combination of u, €U,
and a particular, but not basic particular, solution (v, €

V,\V,) is expressed by convex combination of v, €V,.
However, note that it is not easy in general to generate
U \U, and V,\V, from U, and V,, respectively.

4. Old and New Fourier-Motzkin Methods
4.1 The Usual and Old Fourier-Motzkin Method

The method for obtaining the set of T-invariants which
include at least all minimal support T-invariants is called
the usual and old Fourier-Motzkin method in this paper.
However, it is noted that this method can not always obtain
minimal, but not minimal support, T-invariants u, €
U,\U,. The usual and old Fourier-Motzkin method is as
follows. {1], [2], [3]

< 0Old FM Method >

Input; Incidence matrix A€ Z™",

Output; The set of T-invariants including all minimal .

support T-invariants.

Initialization; The matrix B is constructed by adjoining

the identity matrix E™" to the bottom of the incidence

matrix Ae Z™", with B=[A"E]" e Z(™™",
Following operation a), b) are repeated from i =1 to
m=| P|, where |P| means the cardinality of the place

set P.

a) Add to the matrix B all the columns which are linear
combinations of pairs of columns of B and which
annul the i -throwof B.

b) Eliminate from B the columns in which the j-th
element is nonzero. |

When this algorithm finished, each column of the
submatrix C € Z7” which is obtained by deleting the rows
from the first to the m -th from the final outputted matrix
Be Z™™" is a T-invariant. However, in general, this
submatrix C includes also non-minimal-support T-
invariants. Therefore if the following operation c) is added
and applied to C, minimal support T-invariants are only
obtained.
¢) Each column vector u, € Z™ which satisfies the rank
condition q(u,) 2 rank(4'(u,))+2 is removed from
the submatrix C=[u,]eZP . Here, q(u,) is the
number of nonzero elements of %, € Z* for Au, =0™
and A'(n,) is composed of the columns of A4, of which
columns are corresponding to nonzero eclements of
ueZ™.

4.2 Modified Fourier-Motzkin Method
Note that #, € U, is always obtained, but u,€ U,\U,

can not be always obtained by applying the usual and old

Fourier-Motzkin method to the incidence matrix 4 € Z™".
Therefore, we must modify the old Fourier-Motzkin
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method as follows to obtain always all of minimal

T-invariants for 4 x = 0™

< Modified FM Method >

Input; Incidence matrix Ae Z™”,

Output; All of minimal T-invariants.

Initialization; The matrix B is constructed by adjoining

the identity matrix E™" to the bottom of the incidence

matrix Ae Z™", with B=[ATE} € Z""™" . Let the

column index setof B be I={l,---,r}.

Step0. i=1, j=Lk=1r=n.

Step 1; Find the i-th row of B. If the i-th row has no

zero element, then go to Step 2. If the 7 -th row has at least

one nonzero element, then go to Step 3.

Step2; i=i+1 and go to Step 3.

Step 3. If i = m, then go to Step 4 else go to Step 14.

Step 4. If the i-th row of B has at least one pair of

positive and negative elements, then go to Step 5 else go to

Step 12. .

Step 5. If the (i, j) element is negative, then go to Step 6

else go to Step 10.

Step 6: If the(i, k) element is positive, then go to Step 7

else go to Step 8.

Step 7 Let 5’ and 5* be the j-th and k -th columns

of B, respectively. Adjoin the new column 5’ +b* to

thematrix B and r=r+1.

Step 8; k=k+1 andgoto Step 9.

Step 9: If k£ = r, then go to Step 6 else go to Step 10.

Step 10; j= j+1 and go to Step 11.

Step 11: If j = r, then go to Step 5 else go to Step 12.

Step 12;: Let F={l|a,=0}. |F| denotes the number

of elements of F'. Let the new matrix which has all

columns of b’ for /e F be B. r=|F| and go to

Step 13.

Step 13; Non-minimal vectors are removed from B by

comparing columns of the submatrix C e Z” which is

obtained by deleting the rows from the first to the m-th

from B. Let ¢ be the number of non-minimal vectors

for B. r=|F |- g andgoto Step 2.

Step 14; Each column of the submatrix C e Z?" which is

obtained by deleting the rows from the first to the m -th

from B is a minimal T-invariant. m
The decision of minimal vectors in Step 13 is based upon

the definition for a minimal vector which is given in ® of

section 2. Notice that C e Z”" is a nonnegative integer

matrix.

4.3 Extended Fourier-Motzkin Method

The modified Fourier-Motzkin method is essentially the
method to obtain T-invariants of Ax = 0™, but it can be
also used to obtain particular solutions of Ag; =b by
applying it to the augmented state equation AX =0,
where A =[A,—b]e Z™ In this paper, let us call this

new method which can generate U; DU, as well as
V, oV, the extend FM method. This is briefly described
as follows.

< Extended FM Method >

@® Apply the modified FM method of section 4.2 to the
augmented incidence matrix 4 =[4,—b]e Z™"" and
obtain all minimal T-invariants #, € Z"* of A¥=0™".
@ Now we can find the set of generators (U, V) at
level 5 for xe Z™in Ax=»b from & U, ={ii e
Z™D4| nonnegative integer minimal T-invariants of
Ax =0y,

1) ¥ #(n+)=0" on # el,, then find u,:=
@Q), - u4m) eU,.

@) If #,(n+1)=1" on #, U, then find v,:=
@), 4, (n)" eV;. -

3) If u,(n+1)>1" on #, eU,, then x; = (U, (1),
+o, 4, (n))" is not a solutionof Ax=25. [ |

Remarks

(1) Since |U,|{=|U,| and |V,|=|V,|, we want to
have (U,,V,) rather than (U,, V) on occasion at the
expense of difficulty to determine the expansion
coefficients. Then we need to distinguish U;\U, and
U, as well as V,\V, and V,, where U, 2U, and
Vi oV,.

(2) The rank conditions are useful for (1), where g and
rank(4") are defined in subsection 4.1. For u,€U,,
q(u,)=rank(4'(u,))+1 and for u, €U,\U,,q(u,)
2 rank(4'(u,)) + 2 . These have been given in [1]. For
v, eV,, qv,)=rank(4'(v,)) or g(v,)=rank(4'(v,))
+1. For v,eV;\V,, q(v,) 2 rank(4'(v,)) +2. These
have been proved in [5].

(3) Another propertics for (1) are the support conditions
which compare with two generators u,,u, €U, DU,
with respect to support(x,) and support(x,) as well as
v,,v, €V, 2V,. These are based on the facts that U,
and V, are minimal support vectors and while U,\U,
and V\V, are minimal vectors. [4], [5] n

[Example]

Figure 1 A simple example of a Petri net
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We have the incidence matrix 4 and the marking
difference vector & for Figure 1 as, where @ (O , resp.)
on a place is the initial (destination, resp.) marking;

2100 1 0 1
o =110 0 1], |-1
A=l0 0 =11 -1 0|-%7|-1
2.0 0 -1 0 -1 ]

If the old FM method without the operation ¢) in sub-

section 4.1 is applied to A€ Z*°, generators for Ax=
0*' are obtained as follows, U o ={u,, u,,u,}, where
,=(120002)", u, = (100220)", and u,=(122
200)7.

If the modified FM method in subsection 4.2 is applied to
Ae Z*®, generators for Ax = 0*'are shown as follows
by referring (2) of Remarks; U, ={U,,U;\U,}, U\U,
={u,,us,us}, where u,=(110111)" =(1/2)u, +(1/2)u, ,
u;=(121101)" =(1/2)u, +(1/2)u, , and u,=(1112
10" = (1/2) u, +(1/2) u,.

Moreover, we apply the modified FM method of sub-
section 4.2 to the augmented incidence matrix A =[A,
-ble Z*" (i.e., we use the extended FM method of
subsection 4.3 for A ) and obtain %, €U, ={ i € Z*|
all minimal T- invariants of A% =0%" at level 5 for the
augmented system A4 ¥ =0*'} as follows.

11111111111111)
21223012123234
. 1000110001 11222
U;,=0101021021021 0}
01100222111000
21111000000000
0010101201201 2

(1) For U, ={ii}e Z™", if each set of vectors #, € U,
has the seventh element with zero, we have a minimal
T-invariant 4, € Z>" of Au, =0*' deleting the seventh
zero element from #, € Z*, k= 1,2, 4,6,9, 12. Then
we have the same U ={u,,---,us} as the above U,
obtained by the modified FM method.

() For U, ={#,}e Z™, if each set of vectors #, € U,
has the seventh element with unity, we have a non-
negative integer particular solution v; € Z%f Ax=b
deleting the seventh unity element from #, € Z/*, k=3,
5,7, 10, 13. Then we have ¥V, the set of all nonnegative
integer particular solutions of this example as follows.
Vi={v,-,vs}, wherev,=(120011)", 'v,=(131
001", v,=(110120)", v,=(132100)" and
vi=(121110)" =(@1/2)v, +(1/2)v,. Note also that
we can classify V; as V,={V,,V,\V,}= {{v,--v,},
{vs}} by using the rank conditions in (2) of Remarks.

(3) Finally for U, ={i,}€ Z™"*, if each set of vectors

ue U s has the seventh nonzero element more than unity,
we do not care it because each #, € Z*' obtained from
#,eZ™, k=8, 11, 14, by deleting the seventh element
does not satisfy Ax=»5.

On the contrary, if we apply tlf old FM method to A

of this example, we obtain only U ={i,, i, iy, il,,,4,,},

~

where we have u,,u,,and u, from i, #,,and %,
respectively, but #, and #;, are not solutions for
Ax =b and these two belong to the above item (3). M

6. Conclusions

We have first proposed the modified FM method which
can always generate all minimal T-invariants U; D U,,
while the old FM method can not always do, for
Ax =0™" in P/T Petri nets. We have secondly given the
extended FM method which can always generate all
particular solutions V; oV, as well as U; U, for
Ax =b #0™" in P/T Petri nets, by applying the modified
FM method to the augmented system A% = 0™ of the
original one Ax =5, where A=[A~b]eZ™™)  We
have also shown some criteria for having V, from
Vi, oV,, ie, how to distinguish V,\V, and V, [5],
whereas the criterion for U, from U; DU, has been
well-known [1].

It is noted that the results of this paper are useful for
discussing the general properties through the state equation
approach because we have also found generators for
particular solutions as well as T-invariants at level 4 and 5.
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