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Abstract: This paper proposes neighborhood reduc-
tion techniques in local search of the customer decompo-
sition subproblem in the Multi Depots Vehicle Routing
Problem with Time Windows (MDVRPTW) by using
geospatial relation among depots and customers. The
neighborhood of the customer decomposition subprob-
lem can be simply and well defined but it should include
excessively bad solution candidates. Our techniques find
such candidates by using information of the problem do-
main, geographical relation. We use our techniques in
Tabu Search and evaluate the effectiveness in computer
experiment.

1. Introduction

The Vehicle Routing Problem (VRP) is a traditional
optimization problem, characterized as NP-hard [1], {2].
In the VRP, the objectives are to minimize the number
of vehicles and the total travel distance. The Multi-
Depot Vehicle Routing Problems with Time Windows
(MDVRPTW) are extended from the VRP by consid-
ering real life application, in which multiple depots are
available and each customer can set a time window to
be served[3].

Many approximate algorithms for the VRP have been
developed to obtain approximate solutions within rea-
sonable time. Specially, meta-heuristic approaches, such
as simulated annealing, tabu search and genetic algo-
rithms (GA), have succeeded to this purpose[4]. Tabu
search and simulated annealing are based on local search
while GAs are commonly combined with local searches
in GA-based optimization, referred to as hybrid GA.
Therefore, local search plays a very important roles in
meta-heuristics. The computation time for local search
is proportional to the size of the neighborhood set.

This paper proposes neighborhood reduction tech-
niques in local search of the customer decomposition
subproblem in the MDVRPTW by using geospatial re-
lation among depots and customers. The neighborhood
of the customer decomposition subproblem can be sim-
ply and well defined but it should include excessively
bad solution candidates we can verify before searching.
Our techniques find such candidates by using informa-
tion of the problem domain, say geographical relation.
We employ our techniques in Tabu search and evaluate
the efficiency in computer experiment.

In Section 2, we describe the MDVRPTW definition
and summarize simple idea of the classical heuristic al-
gorithm of the VRP, called Saving Method. In Section 3
our routing procedure for the MDVRPTW is presented

and in Section 4 reduction techniques are proposed. Sec-
tion 5 evaluates the effectiveness by computer experi-
ment. We conclude this paper in Section 6.

2. Preliminaries
2.1 Problem Definition

Let V = {v1,v2,"--,vm} be a set of vehicles,
C = {ci,c2,- -~ ,cn} be a set of customers and D =
{d1,d2,--- ,di} be a set of depots. Each customer ¢;
demands delivery of load dm,;. The demand is met by a
vehicle servicing it once per order. Each customer ¢ has
a time window [et(i), [t(¢)] such that a vehicle can visit
and serve ¢; after the time et(i) and is required comple-
tion of the service before lt(i). Time st(s) is needed to
serve at ¢;. Each vehicle v; can load up to the maximum
capacity cap(i) and starts and ends at the same depot.

The objective of the problem can be various. Usu-
ally we minimize the number of vehicles to serve all
customers and also minimize the total travel distance,
without violating the vehicle capacity constraint and the
time window constraint for serving at each customer.

2.2 Saving Method

The saving method|[5] is a heuristic algorithm to ob-
tain an approximate solution to the VRP, but not to
the MDVRPTW. The saving method firstly computes
the difference of the total distance between two routing
plans with respect to two customers ¢; and ¢;:

Plan1: two routes each of which includes ¢; and c;,

respectively (See Fig. 1 (a)),
Plan2: a route including both ¢; and ¢; (See Fig. 1
(b))

The difference is called Saving Value. Let Dy; be
the distance between the depot and ¢ and D;; be the
distance between ¢; and ¢j. The saving value SV can
be computed as follows:

SV = 2D4;+2Da; — (Da;i+ Dij+ Daj)
= Dai+Daj— Dij

That is, the saving value means the reduction length
when two independent routes are combined.

At the beginning of the route planning, we assume
that there exist ng independent routes, where nq is the
number of customers assigned to the depot. That is,
each route includes just one customer.

The second step of the saving method tries to com-
bine routes as small as possible total cast. In the saving

ITC-CSCC 2002



method, starting from one route, a route with higher
saving value are combined step by step with considering
the capacity constraint. This is a kind of greedy algo-
rithm and obtains an approximate solution.

depot
(@) (b)

SVij = 2Ddi + 2Dgj - (Ddi + Djj + Ddj)
= Ddi + Ddj - Dj

Figure 1. Saving Value

3. Multi Depot Routing
3.1 Procedure

To solve the MDVRTW, the following two steps are
needed:

1. assign all customers to depots (that is, decomposi-

tion of the customer set into |D| subsets),

2. construct a routing plan of the assigned customers

for each depot.

Step 1 should influence the route planing but obtain-
ing the optimum customer decomposition for the best
route planning is very difficult, say NP-hard. Moreover,
it is also NP-hard to obtain the optimum routing plan
for the assigned customers at each depot since it is a
single depot VRP. Therefore, we employ tabu search for
the customer decomposition (Step 1) and a traditional
heuristic algorithm, called saving method, for the route
planning after the decomposition (Step 2). Note that
we need to extend the original saving method since it
can not allow the time window constraint.

For the decomposition problem, we define the neigh-
borhood structure of solution (decomposition) x =
{D1,Dq,---,D,} where D; represents a set of cus-
tomers assigned to depot d;. Neighborhood N(z) of z
is defined as a set of decomposition z’ where z’ is gener-
ated from = by moving one customer from the assigned
depot in z to another one. This is called one-movement
neighborhood.

Figure 2 shows the procedure to solve MDVRTW
problems in which ESM represents the extended saving
method.

3.2 Extended Saving Method

The original saving method described in Section 2.2
cannot be applied to the MDVRPTW since the time
window at each customer is not considered. Therefore
we present an extended saving method which introduces
a new saving value.

1: procedure MultiDepotRouting;
2: begin

3:  { N: the number of iterations}
4: { f(z): the value of the objective function}
5. generate z = {D;, Dy, -- -, Dy} by any manner;
6:  Tpest 1=
7: repeat
8: construct routing plan by the ESM and
9: compute f(z') for each z’ € N(z);
10: select the new decomposition £ from N (z)
11: according to the TS strategy;
12: if f(z) > f(Z) then zpeqt 1= &;
13: T =&

14:  until the number of iterations reaches N;

15:  return Tpest;
16: end;

Figure 2. Multi Depot Routing

Because of the time window constraint, we need to
check the starting time constraint of the customers
on the route when we combine a route in the saving
method. Even if the starting time constraint is feasible,
some vehicle may need to wait for the starting time of
the customer on the route. So we need to consider the
waiting time for better quality of a approximate solu-
tion.

Let Wy be the waiting time at ¢; on the route in-
cluding only ¢; from the depot and W;; be the total
waiting time on the route including ¢; and c¢;.

The saving value SViy of waiting time can be com-
puted as follows:

SViw = Wai+Wy; — (Wai+ Wi;)
= Wy; - Wi,

That is, the saving value of waiting time means the
reduction of waiting time when two independent routes
are combined.

We refer to the original saving value described in Sec-
tion 2.2 as SVp. So now we introduce new saving value
as follows:

SV =a -SVp+p8-SW

The tradeoff parameters o and § are determined by
considering various conditions. By using the new saving
value we employ the saving method to the MDVRPTW.

4. Neighborhood Reduction

The size of N'(z) in the one-movement neighborhood
is calculated as follows:
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(ICI = D1)) + (IC| — | D)
++ (IC] = [ Dxl)

k-|Cl = (|D1] + |Dz| + - - | D)
k-|C|-|C|

= |Cl(k-1)

W(z)]

where k is the number of depots.

The neighborhood structure of the customer decom-
position subproblem is simple and well-defined but it
should include excessively bad solution candidates and
we can verify such candidates by using problem domain
information before searching. That is, our approach is
to reduce neighborhood solution candidates with high
probability of extremely bad objective value.

The reduction is performed by using geospatial re-
lation between depots and customers. In the one-
movement neighborhood, all cases of one customer
movement is defined but in the reduced one-movement
neighborhood the movement of customer ¢, to depot d;
from d; is allowed only when there exits the geospatial
relation among customers and/or depots.

What is the geospatial relation? The geospatial re-
lation can be defined in various ways. In this paper
we propose two conditions for the relation. We define
the reduced one-movement neighborhood such that the
movement of customer cp, to depot d; from d; is allowed
when

NR1: distance between d; and ¢ is shorter than

threshold Dry,.

NR2: distance between ¢, and any customer as-

signed to d; is shorter than threshold Dpy,.

Figure 3 explains these two conditions. In the figures,
polygons show depots and (small) circles customers.
The (small) circles connected by lines represent the cur-
rent assigned customers to the depot shown in the fig-
ures while the others are assigned to another depot not
shown in the figures. The dotted line circles depict Dry,:
In (a), we consider the distance between d; and ¢ and
in (b) the distance between ¢, and all the customers
assigned to d;. The shaded (small) circles in the both
figures are available of the reduced one-movement neigh-
borhood. That is, the non-shaded (small) circles are
reduced from the neighborhood definition.

‘We understand that both conditions can reduce dras-
tically the size of the neighborhood comparing with the
original one-movement neighborhood and removed can-
didates (decompositions) have very few possibility to
generate better routing plan than the current decom-
position. :

5. Experimental Evaluation

To evaluate the reduction technique, we apply
our method to problem instances obtained from OR-
Library(http: //mscmga.ms.ic.ac.uk/info.html). Table 1
shows the size ratio of the one-movement neighborhood

Figure 3. Geospatial Relation

and our reduction method (in |NMng|/|NTs|), computa-
tion time, and solution quality for an instance, pro$(4
depots and 144 customers). “TS” represents the tradi-
tional tabu search without any neighborhood reduction
and “NR1” and “NR2” are our proposed method with
Tabu Search. We can observe our reduction technique
can contribute to reduce the computation time without
losing the solution quality. Figures 4 and 5 show the
comparison of quality improvement between TS with-
out any reduction and our methods NR1 and NR2, re-
spectively. Figures 6 and 7 dipict the reduction rate
vs. the solution quality and the reduction rate vs. the
computation time, respectively.

From these results, we can confirm that our ap-
proaches are very effective. NR1 allow us to reduce the
neighborhood up to 20% while NR2 up to 10% but NR2
requires more computation time than NR1.

6. Concluding Remarks

In this paper, we proposed neighborhood reduction
techniques in local search of the customer decomposi-
tion subproblem in the Multi Depots Vehicle Routing
Problem with Time Windows (MDVRPTW) by using
geospatial relation among depots and customers. The
neighborhood of the customer decomposition subprob-
lem can be simply and well defined but it should include
excessively bad solution candidates. Our techniques find
such candidates by using information of the problem
domain, geographical relation. We employed our tech-
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Table 1. Evaluation Results (pr03 (4,144))

TS | NRI | NR2
Nnr|/INrs] - 80%
comp. time[s] | 755.9 | 604.7 | 611.7
f(Tpest) 9578.0 | 9578.0 | 9578.0
TS NR1 NR2
INnr|/Nts - 60%
comp. timels] | 755.9 | 454.4 | 456.5
J(Tpest) 9578.0 | 9578.0 | 9578.0
TS NR1 NR2
Nnrl/INTs| - 40%
comp. timefs] | 755.9 | 298.1 | 298.1
F(Zoest) | 9578.0 | 9578.0 | 9578.0
TS NR1 NR2
Wierl/WWrsl | - 30%
comp. time[s] | 755.9 | 223.6 | 226.6
S (Tbest) 9578.0 | 9560.1 | 9578.0
TS NR1 NR2
[Nnrl/INTs| - 20%
comp. time[s] | 755.9 | 140.3 | 148.9
S(Tbest) 9578.0 | 9695.8 | 9578.0
TS NR1 NR2
INnrl/Wrs| - 10%
comp. time[s] | 755.9 | 66.1 72.3
F(Tbest) 9578.0 | 9701.1 | 9571.6
TS NR1 NR2
Wiel/Wrs| | - 5%
comp. time[s] [ 755.9 | 29.6 329
S (Zvest) 0578.0 | 9732.1 | 9644.6

niques in Tabu Search and showed the effectiveness by
experimental evaluation.

As future works, we need to analyze in detail the

neighborhood structure to explain the effectiveness the-
oretically and also to experiment with lots of large scale
benchmark problems.
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Figure 6. Relation between Reduction Rate and f(Zpest)

S—

900 ' " g ——

800 *NR2* -we ]

700 |
600 | B, E
500 )- T
400 | .

£{x_{best}}

300 | =,
200 | e
100 f e,

0 . R . ,
100 80 60 40 20 0
IN_{NR}| / |N_{TS}|

Figure 7. Relation between Reduction Rate and Comp.
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