Proposal of Multiple Blocking and Its Efficiency in Matrix Operations

Satoshi Tateno and Takaomi Shigehara

Department of Information and Computer Sciences, Saitama University
Shimo-Okubo 255, Saitama, Saitama 338-8570, JAPAN
_ Phone: +81-48-858-9035, Fax: +81-48-858-3716
E-mail: tatenoCme.ics.saitama-u.ac.jp, sigeharalme.ics.saitama-u.ac.jp

Abstract

In this paper, we propose a new blocking method, mul-
tiple blocking, and examine the efficiency of the method
in basic matrix operations. In the best case for the
matrix multiplication C = AB+ C, the multiple block-
ing improves the performance by more than 10%, com-
pared to the conventional single blocking method.

1 Introduction

Nowadays, the hierarchy structure of the memory plays
a crucial role for obtaining high performance espe-
cially in a large scale numerical computation in various
fields in science and technology. A typical structure
of the memory hierarchy in standard modern comput-
ers is shown in Fig. 1. As well-known, upper layers
have memory access speed far faster than lower layers,
whereas the capacity of the upper layers is very lim-
ited. Thus, in order to avoid cache misses and keep the
performance at a high level, it is important to divide
the original data into several pieces of block, the size
of which is suitably adjusted to the capacity available
in cache. The so-called blocking is an absolutely in-
dispensable technique for optimization in this context.
Blocking reduces the number of cache misses as much
as possible and it ensures a substantial improvement
of memory access. In many applications such as the
solution of linear systems in linear algebra, the use of a
blocked algorithm, if possible, is a standard strategy to
keep the performance at a higher level. Indeed, blocked
algorithms have been already supported in LAPACK
i1, 2].

However, the present status of blocking technique
seems to be far from satisfactory for the modern com-
puters with multi-layer caches. The conventional block-
ing corresponds to a single blocking and it does not take
into account the difference in the capacity and mem-
ory access speed at each cache level. A further improve-
ment in performance is expected if we incorporate with
the memory hierarchy with multi-layer caches. This is
exactly our purpose. In this paper, we propose a new
blocking method, taking into account the multi-layer
structure of cashes. QOur proposed method, multiple

Fast Small
Register
E; L1 Cache Memory g
B
w
§ | L2 Cache Memory x%
<
| Main Memory |
Slow | Storage Device (HDD, etc.) I Large

Figure 1: Memory hierarchy

blocking, does not treat multi-layer caches as integrated
as in the conventional blocking, but it utilizes multi-
layer caches in an explicit manner.

2 Algorithm for multiple block-
ing

From the viewpoint of programming, multiple blocking
is attained by a further blocking of the inner loops of a
singly blocked source code. In our approach, the source
code is divided into the two levels; the upper level is
called FRAME, while the lower level is called CORE.
In this section, we describe the algorithms both for
FRAME and CORE. Sample programs are also shown.

2.1 FRAME part

FRAME is a routine at the upper level for multiple
blocking. All control processes, such as error process,
are performed in FRAME. In Fig. 2, we show pseudo-
code for a core loop in FRAME for matrix multiplica-
tion. The algorithm of FRAME is as follows;

1. Divide data of arraies A/B/C into small square
pieces Auo/Buo/Cuo, and copy Ayo/Buo/Cuo to
Ay /By /Cy, which are temporary nb2xnb2 ar-
raies. The memory access to Ay /By /Cy is kept
to be continuous, by setting nb2 to a suitable size
according to the capacity of L2 cache.

ITC-CSCC 2002

do j=1,N,nb2
do i=1,M,nb2
Cw(1:nb2,1:nb2)=0
do k=1,K,nb2
Aw=A(i:i+nb2~-1,k:k+nb2-1)
Bw=B(k:k+nb2-1,j: j+nb2-1)
CORE(Aw,Bw,Cw)
end do
C(i:i+nb2-1,j:j+nb2~1)=alpha*Cw
+ beta*C(i:i+nb2-1,j:j+nb2-1)
end do
end do

Figure 2: Core loop in FRAME for matrix multiplica-
tion

2. Call the subroutine CORE from FRAME. Calcu-
late Cy = Ay By +Cy in CORE. After calculation
is completed in CORE, copy aC,, + 8Cyo to C.

For matrix multiplication, there are two cases in
CORE,; One is the case that any matrices are not trans-
posed such as Cp, = AyBy + C,, while the other
is the case that one of A, /B, is transposed such as
Cy = Asz + C,, . For the latter case, FRAME copies
a transposed array data to A, or B, in order to keep
the memory access continuous in CORE.

2.2 CORE part

CORE is a routine for calculation of matrix operations,
using small array data given from FRAME. We have
to tune CORE as much as possible in order to improve
the total performance. Note that conventional block-
ing treats multi-layer caches as integrated. As a re-
sult, blocking is not considered in CORE. On the other
hand, multiple blocking utilizes multi-layer caches in a
direct manner to improve the performance. As a re-
sult, blocking is indispensable in CORE, as well as in
FRAME. '
We show typical core loops in CORE in Fig.3. In
Fig.3, (a) is a core loop for matrix multiplication
Cy = AyBy + Cy, while (b) is a core loop for matrix
multiplication Cy, = AT B,, + C,,. Blocking in CORE
corresponds to loop stripmining, which cuts long loops
into shorter ones to fit the data capacity in the in-
nermost loops to the capacity of L1 cache. For this
purpose, the stride for stripmining is adjusted to the
capacity of L1 cache. By setting to a suitable value, we
can largely suppress unnecessary memory access. For
each loop, stripmining is independently applied and the
stride for each loop is also chosen irrespective to the
stride of the other loops. So it is possible to find the
parameters such that the performance in CORE is kept
at a high level. Needless to say, the other tuning tech-
niques than blocking such as loop unrolling, latency

hiding and software pipelining are required to improve
the performance in CORE to a higher level.

2.3 How to decide parameters

Parameters of multiple blocking (the depth of loop un-
rolling, the block size of FRAME, the order of strip-
minings and their strides) are automatically decided
by benchmark. Throughout the benchmark, in order
to keep the continuous memory access as much as possi-
ble, the order of the innermost loops with indices i,j,k
is fixed at jki for C,, = A, By, while fixed at jik for
Cy = AT B,,, as shown in Fig. 3.

The benchmark runs according to the following pre-
scription;

1. Select the depth of loop unrolling for the inner-
most triple loops from the set Sy = {1,2, 3,4, 8}.
The number of all combinations is 52, from which
the best five patterns are selected. At this stage,
multiple blocking is not taken into account yet.

2. For each unrolling pattern determined at the stage
1, select the block size nb2 of FRAME from the set
Srbe = {32,48,64,96,128,256}. Here the block
size nb2 is common for the triple loops in FRAME.
The number of all combinations is 6 x 5 at this
stage, from which the best four patterns are se-
lected. As at the stage 1, multiple blocking is not
taken into account yet at this stage.

3. For each selected at the stage 2, decide the or-
der of stripmining, namely the order of the outer
triple loops in CORE. Note that “No Stripminig”
is a possible choice in this case. In case that strip-
mining is applied, the stride is common to all the
triple loops and is fixed to nbli = nb1j = nbik
= 16. The number of the combinations is 16 for
stripmining. We select the best four patterns from
all combinations (16 x 4).

4. For each candidates selected at the stage 3, decide
the strides nb1inbij nbik for stripmining from
the set S,;n = {0,16,24,32,40,48,56}, where 0
means “No Stripmining”. The number of all com-
binations is at most 73 x 4, from which we select
the best one.

3 Experimental results

We show machine specifications in Table 1 and com-
piler options for each machine in Table 2, respectively.
We evaluate the performance of multiple/conventional
blocking by matrix multiplication C = a«AB + 8C. In
the experiment, A, B and C are taken as dense square
matrices of size n = 512, and a = § = 1.0.

Table 3 shows the results of the performance evalu-
ation on each machine. In Table 3, the column “Un-
rolling” shows the depth of loop unrolling for i/j/k

620

ITC-CSCC 2002

do JB=1,nb2,nblj
do KB=1,nb2,nbik
do j=JB,JB+nblj-1
do k=KB,KB+nbik-1
tmp=Bw(k, j)
do i=1,nb2
Cw(i,j)=Cu(i,j)+Aw(i,k)*tmp
end do
end do
end do
end do
end do

(a) Cyp = Ay By, + Cy

do IB=1,nb2,nbli
do j=1,nb2
do i=IB,IB+nbli-1
tmp=0
do k=1,nb2
tmp=tmp+Aw(k,i)*Bw(k,j)
end do
Cw(i,j)=Cuw(i,j)+tmp
end do
end do
end do

(b) Cy = AT B, + C,

Figure 3: Core loop in CORE for matrix multiplication

core loops in CORE, the order of which is also shown
in this column (outer loop — middle loop — inner loop).
The column “nb2” shows the block size of a core loop
in FRAME. The column “DV” shows the order of core
loop stripmining in CORE. In this column “Lxx” in-
dicates that the stride of loop stripmining is xx for L-
loop, where L = M or O, and M and O mean the middle
and outer loops shown in the column “Unrolling”, re-
spectively. The indication “none” in this column corre-
sponds to the case for the conventional single blocking
without loop stripmining. The columns of “Speed-Up”
and “Performance rel. to Peak” show the performance
of multiple blocking, relative to the performance of the
conventional single blocking and the peak performance
of each machine, respectively.

As seen from Table 3, multiple blocking is indeed ef-
ficient for all systems, except AXP18W, for type C,, =
Ay By. In particular, the performance improvement
reaches 11.2% for AXP18L. The main reason for speed
up by multiple blocking is that, for type Cy, = Ay By,
stripmining for the loop with the index k in Fig. 3(a)
substantially decreases the L1 cache misses for matrix
Ay. On the other hand, for type C,, = AL B,,, a re-
markable performance improvement is not observed.

-However, we guess that there is much space to be

improved for determining the optimal parameters for
transposed matrices. In the present method, we take
a common block size nb2 for all indices in FRAME.
As a result, the shape of block is square. For type
C, = ATB,, vertical rectangle is preferred to avoid
cache misses as much as possible and is expected to
bring about the performance improvement.

4 Summary

In this paper, we have proposed a multiple block-
ing method which makes it possible to utilize multi-
layer caches efficiently. The efficiency of the proposed
method has been confirmed by the performance evalu-

ation for matrix multiplication. In the best case for the
type Cy = Ay By, the multiple blocking brings about
the performance improvement by more than 10%. On
the other hand, in case for the type C, = Al B,,
a remarkable change is not observed by using multi-
blocking. However, the performance is expected to
be improved by extending the parameter space in the
benchmark. In particular, it might be crucial for better
performance to take into account the vertical rectangle
shape in FRAME. The research in this direction is now
going on.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J.
Demmel, J. J. Dongarra, J. DuCroz, A. Green-
baum, S. Hammarling, A. McKenney and D.
Sorensen, “LAPACK Users’ Guide (3rd Ed.),”
SIAM, 2000.

[2] J. J. Dongarra, I. S. Duff, D. C. Sorensen and
H. A. van der Vorst, “Numerical Linear Algebra
for High-Performance Computers,” SIAM, 1998.

[3] J. J. Dongarra, J. DuCrog, I. S. Duff and S. Ham-
marling, “ A Set of Level 3 Basic Linear Alge-
bra Subprograms,” ACM Trans. Math. Software,
Vol. 16, pp.1-17, 1990.

ITC-CSCC 2002

Table 1: Machine specifications

Abbr. Clock | Theoretical | L1 Cache (KB) [L2 Cache
Name Full Name (MHz) | Peak(Mflops) | Inst. | Data (KB) 0S
SPARC Sun UltraSPARC-1 167 334 16 16 128 Solaris 2.6
ULTRA2 | Sun Ultra 2 296 592 16 16 2048 Solaris 2.6
PII333 Intel Pentium II 333 333 16 16 512 Windows935
AXP18L Linux
“AXPisw | AMD AthlonXP1800+ 1530 3060 64 64 256 Windows Me
Table 2: Compiler options
System Compiler i Options
SPRAC SPARCompiler FCRTRAN77 4.0 | -fast -xO5 -xtarget=ultra2 -xarch=v8plusa
-xcache=16/32/1:2048/64/1-unroll=1 -pad
ULTRA2 | SPARCompiler FORTRANT77 4.0 | -fast -xO5 -xtarget=ultra -xarch=v8plusa -unroll=1 -pad
PII333 gee 2.95.3 & g77 2.95.3 -03 -flast-math -fomit-frame-pointer -m486
AXPI18L [gec 2.95.3 & g77 2.95.3 -03 flast-math -fomit-frame-pointer -m486
AXP18W | gcc 2.95.3 & g77 2.95.3 -03 -flast-math -fomit-frame-pointer -m486
Table 3: Performance of matrix multiplication
CORE Type Unrolling Performance | Speed-Up Performance
System (AwByw / ATB,) | (Out-Mid.-In) nb2 DV (Mflops) (%) | rel. to Peak(%)
.) M24 161.419593 105.5 48.3
SPARC AwBuw ji-kd-il 9 ™ one 153.038389 - 1523
B o axt | 198 M0 233.467814 993 69.9
wBw Joridk " Tone 235.180880 — 704
. , M4 307.641610 110.9 51.0
ULTRA2 AuwBuw jl-k8-il 9 ™ hone 977208183 = 468
T o M24 366.209814 98.2 61.8
Ay Bu ja-i2-kl | 128 oo 373.016639 - 63.0
, , M16 136.261653 105.6 409
PII333 AwBu J3-k4-i8 9 ™ hone 129.055508 = 388
T 1 e M16 136.261653 103.4 40.9
Ay Buw j1-i3-x4 32 " one 132934215 = 397
‘ ‘ MB6 | 1000.895060 1112 35.6
AXP1SL AwBu j1-kd-i8 9 ™ one 981.030516 — 32.0
T o 016-M32 | 1062.862360 103.8 34.7
Ay Bu j4-il-k2 ¢ 128 e 1023.617330 — 334
) . M16 958.698057 96.4 31.3
AXPISW AwBu jl-k3-i4 | 64 e 994205393 — 394
B DT O 994.205303 100.0 324
wBuw Jail-k none 994.205393 — 32.4

ITC-CSCC 2002

