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Abstract: The increaseing speeds are accompanied
by decreases in pulse rise and fall time in VLSI circuits.
These accenturate the high frequency spectral contents
of the signals and cause the frequency dependent loss
of the conductors which interconnect the various sub-
circuits composing of VLSI circuit. The lossy effect is
approximated by the square root of frequency depen-
dence of the per unit length resistance. In the practi-
cal applications, several problems may arise along with
this approximation, so we extend our investigation of
the lossy effect by numerical Laplace inversion method.

1 Introduction

VLSI is the complicated system composed of the large
number of linear/nonlinear lumped elements and in-
terconnects. The increasing speed of the clock signal
produces high frequency components in signal tran-
sients and accurate modeling of the interconnect by
distributed transmission line is no longer avoidable. In
the high frequency domain, the loss of the interconnect
is caused by the skin effect of conductor which depends
on the square root of frequency. In the practical ap-
plications, several problems may arise along with this
approximation. In this paper we examine the validity
of the approximation by numerical Laplace inversion
method.

2 Computational model of lossy
transmission line

2.1 Equations in time domain

Let us consider a multi-conductor uniform lossy trans-
mission line with common return path depicted in
Fig.1. In the time domain, voltage vector v{(z,t) and
current vector i(z,t) at the position z are subjected by

the following telegrapher’s equations[1],[2}.
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Fig.1 Lossy transmission line
L, C and G are per unit length indactance matrix, ca-
pacitance martix and leakage matrix. Z;(t) represents

the per unit length lossy matrix whose elements depend
on frequency and * denotes the convolution integral.

2.2 Equations in Laplace domain

Since the equations (1) and (2) are linear it is possi-

_ ble to analyse them in s domain by Laplace transfor-

mation. When the initial distributions of voltage and
current are zero, we obtain

_i‘%(:;_’f_). = sLI(x,s) + Z(s)I(z,s) ®3)
_(_1_1%9_) = sCV(z,s) + GV (z,s) (4)

where V(z, s) and I(z, s) are s functions of v(z, ) and
i(z,t).
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2.3 General solutions in Laplace do-
main

From equations (3) and (4) we obtain the following
general solutions for V(z,s) and I(z,s)

V(z,s) = exp[—Q(s)z] K (s) + exp[Q(s)z] K ~(s)
(5)
I(z,s5) = P(s){exp[-Q(s)z] K *(s)
— exp[Q(s)z] K™ (s)} (6)
where
Q*(s) =[sL+ Z(s

LA

P(s) = [sL + Z:(s)] ' Q(s) g

K™ (s) and K~ (s) are arbitrary vectors determined by
the conditions of both ends. For example, the step
response of wave front is

V(z,s) —exp[ Q(s)x]. (8)

After s functions V(z,s) and I{z,s) are determined,
we can obtain the time responses of v(z,t) and i(z,t)
by numerical Laplace inversion.

3 Formulation of frequency de-
pendent lossy term

3.1 Skin effect loss of cylindrical con-
ductor

At high frequency, current flows concenturatedly
nearby the surface of the conductor and increases the
per unit length resistance. For the cylindrical conduc-
tor with radius R we obtain the theoretical formula of
per unit length resistance

v 1 [splo(\/sonR)
Zis) = 27R \/—;Il(,/sauR) ®)

where Ip(z) and I;(z) are modified Bessel functions.
By the asymptotic expansion, we obtain

5 1 1 sp
Zi(s) = onR? + 27R V r (10)

and this means the approximate square root formula of
frequency dependence.

3.2 Examination for validity of square
root approximation

In the practical application, it is necessary to exam-
ine the validity of square root approximation. For this
purpose we calculate Z;(s), Z;(s) and

A(z,8) = Pl ' L + Z(9))sz) (11)

"~ lexp{—/[sL + Zi(s)]sCz}

vs. f (s = i2rf). Obtained results are shown in
Fig.2 and Fig.3 where conductor is copper and per unit
length parameters are L = 1.0uH/m, C=100.0pF/m
and G=0.
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Fig.2 | Zi(s)|,|Zi(s)] vs. f

Fig.3 A(0.2,s) vs. fand R

From these two examples, it may be concluded that
square root approximation becomes worse as f (abso-
lute value of s) increases.

4 Single lossy transmission line
terminated with nonlinear el-
ement

When the lossy transmission line is terminated by non-
linear element, we do not analyse it only in the s do-
main and main problem is the treatment of the term

H(s) = Zi(s)I(z,s) (12)

contained in the right hand side of eq. (3) in the time
domain.
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4.1 Square root approximation by Z;(s)

For Zi(s) = /s, we obtain
h(t) = 1 1 —f(t—T1)dr (13)
N
in the time domain where
J .
f(t—T) = a—(t——T)"t(.'B,t—T). (14)

Discretization by time step At yields the following ap-
proximate formula[3]

1 (n+1)At 1
Hn+ A = — / Z=1l(n + DAt - riir
Y ES Y YO RO
where
m+1 1 .
Zo(m) = / \/—FdT =2(vVm+1-+y/m). (16)

4.2 Numerical inversion of

Z,'(S)

In the time domain we obtain

Laplace

t
h(t) = ii—/ Zo(t — T)i(z, T)dT amn
dt J,
for eq. (12). By discretization we obtain
m~—1
h(m) = E Zo(m — p)i(z,p) — Y, Zo(m —1-p)i(<,p)
p=0 p=0
(18)

where almost accurate time sequence Zo(p) p
0,1,---,m can be obtained by numerical Laplace in-
version of s function

Zo(s) = —i—Z,'(s). (19)

5 Calculated example

We calculate transient voltage response of wvy(t) of
the model shown in Fig.4 where I = 0.277uH/m,
C=40.07pF/m and G=0. Characteristic of nonlinear

diode is given by
)=

va(t)

0 =i o (24

where v7r=25mV and 0=1.0pA.

(20)
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Fig.4 Lossy transmission line terminated by nonlinear
diode

Waveform of source voltage is shown in Fig.5.
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Fig.5 Waveform of source voltage

Partial differential equations governing the whole cir-
cuit are discretized and solved in the time domain by
FDTD method. Fig.6 shows the calculated results.
From the previous examination it may be concluded
that result by using Z;(s) is more accurate.

6 Conclusion

In the previous works approximate square root for-
mula of s has been derived as stated in 3.1. Strictly
speaking, this formula seems to have weak theoreti-
cal ground. In this work we investigate the validity of
square root formula by applying the numerical Laplace
inversion method.

The points of discussion are essentially summarized
as follows:

1. to clarify the problem of approximation by eq. (10)

2. to clarify the problem of approximation by eq.
(15).

In all cases we use eq. (9) as the exact frequency de-
pendent lossy resistance.
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Fig.6 Calculated wave front of v2(t)
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