Implementation of Elliptic Curve Cryptographic Coprocessor
over GF(2'®%) for ECC protocols

YongJe Choi', HoWon Kim' and MooSeop Kim'
1E]ecl:ronics and Telecommunications Research Institute
161 KaJeongDong YuSeongGu, DaeJeon, 305-350, KOREA
Tel: +82-42-860-1327, FAX: +82-42-860-5611
E-mail: choiyj@etri.re.kr

Abstract: This paper describes the design of elliptic curve
crypto (ECC) coprocessor over binary fields for ECC
protocols. Our ECC processor provides the elliptic curve
operations for Diffie-Hellman, EC Elgamal and ECDSA
protocols. The ECC we have implemented is defined over the
field GF(2'®),which is a SEC-2 recommendation [6).

1. Introduction

The Elliptic Curve Cryptography (ECC) was proposed in
1985 by Neal Koblitz[3] and Victor Miller[4], and the
security of it rests on the discrete logarithm problem over
the points on an elliptic curve. The ECC provides higher
strength-per-bit than any other current public-key
cryptosystems [1]. Because of its higher strength-per-bit,
Elliptic Curve Cryptosystems are being increasingly used
in practical applications (e.g. IC card and mobile
devices) instead of RSA, which is most used for public-
key cryptosystems.

The Elliptic Curve Cryptosystems are used for
implementing protocols such as ECDSA digital signature
scheme, EC Elgamal Encryption/Decryption scheme,
Diffie-Hellman key exchange scheme and so on. This
paper analyzed the elliptic curve operations of these ECC
protocols and designed the Elliptic Curve Cryptographic
Coprocessor to efficiently implement the ECC system.

2. ECC arithmetic
2.1 Scalar Multiplication

Just as modylar exponentiation determines the efficiency
of RSA cryptographic systems, scalar multiplication
dominates the execution time of ECC systems. Scalar
multiplication is the operation to compute kP, where k is
a random integer and P is an elliptic curve point, and it
can be defined the combination of additions of two points
on an elliptic curve. The addition of two points on an
elliptic curve is defined in order that the addition results
will be another points on the curve as following
Algorithm 1. (The elliptic curve over F,™ given by the
equation y* + xy = x* +ax* + b and P, and P, are on the
elliptic curve).

Algorithm 1. Point Addition Equation

Input : Py =(x1, y1) , P2=(x2, 2).
Output : P; = P, + P, = (x5, y3).

1. If P, = P, (doubling)
x=A2+A+a, V3 =x2 +(A+1)x;
where (A =x;+y,/x)

2. Elseif P, # P, (point addition)
x3=/12+ﬂ,+x| +x;+a,

V3= My tx3) a3ty
where (A= (y2+y1)/(x2+x1))
3. Retumn (X3 ,y3)

In either case, when P, = P, (doubling) and P, # P,
(point addition), major operations are field multiplication
and field inversion. (Squaring and field addition are
enough ignorable because of its less computation time.)

2.2 Field Multiplication

The shift-and-add method for field multiplication is well
suited for hardware implementation because a vector
shift can be performed in one clock cycle, while the large
number of word shifts make it less desirable for software
implementation, and the modular reduction can be
operated simultaneously. This algorithm is based on the
observation that @ e b mod f(x) = (@ X" ' b+ eee +a,
b +a xb+apb)modf(x) = (a, x"" bmod f(x))+
eee + (a; x* bmod f(x))+ (a; x b mod £ (x))+ (ao b mod
f (x)) as following Algorithm 2.In step 2, b is added to
the accumulator c if @; = 1 and shifts the result to the left
(c » x). ‘Mod f (x)’ operation can be easily computed by
the addition of f(x) to b if ¢, = 1.

Algorithm 2. Shift-and-add field multiplication
Input : Binary Polynomials a (x) and b (x).
Output : ¢ (x) =a (x) « b (x) mod f(x).
1. ¢c€0.
2. Forifromm—-1to1do
2.1 fa;=1thenc € c+b.
2.2 ¢ € cexmodf(x).
3. Ifay=1thenc€c+b.
4. Return (¢).

2.2 Field Inverse Multiplication

Almost Inverse Algorithm (AIA) is desirable for
hardware implementation because it is calculated by one
bit (left or right) shift operations and bit-width XOR
operations [7]. The reduction step of AIA can be
performed whenever u is divided by x. This method, it is

ITC-CSCC 2002

called Modified Almost Inverse Algorithm (MAIA)[2],
reduces hardware sizes and operating cycles. In
algorithm 3, note that if b is not divisible by x, then b is
replaced by b + f (and d by d — 1) before the division.
When operation step is terminated, u = 1 and b = a™ mod
Jix).
Algorithm 3. Modified Almost Inverse Algorithm
Input:a e F",a#0.
Output : ¢~ mod f(x).
1. b€ lL,c€0,u€aveEfk€O.
2. While x divides u do :
21 u€u/x
2.2 Ifx divides b thenb € b/ x;
else b & (b+f)/x.
If u = 1 the return (b).
If deg(u) < deg(v) then:u & v,boc.
u€ut+v,behb+c.
Goto step 2.

oV kW

3. ECC Protocols

3.1 Diffe-Hellman

The Diffie-Hellman protocol is the basic public key
crypto system proposed for secret key sharing. A (Alice)
and B (Bob) first agree to use a specific curve, field size,
and type of mathematics. They then share the secret key
by process as follows. We can see that we just need
scalar multiplication in order to implement the Diffie-
Hellman protocol.

Algorithm 4. Diffie-Hellman Protocol

1. A and B each chose random private key
‘k,” and ‘ky’.

2. A and B each calculate k,P and kyP, and
send them to opposite side.

3. A and B both compute the shared secret Q

= ka(kyP) = ki(k,P).

3.2 EC Elgamal

Elliptic Curve (EC) Elgamal protocol is used for secret
message translation between A(Alice) and B(Bob).
Message is encrypted by A’s public key, and decrypted by
A’s secret key. Algorithm 5 presents the EC Elgamal
protocol for translating Message (M;, My) to A.

Algorithm 5.EC Elgiml Protocol

Key generation : (A)

1. Select a random integer a from [1, n-1].
2. Compute aP.

3. A’spublic key is aP; A’s private key is a.

Encryption : (B)

1. Select a random integer k from [1, n-1].

2. Compute kP and k(aP) = a(kP) = (x,y).

3. Ifx=0 (mod p) or y=0 (mod p) then go
to step 2.

4, Compute M, *xand M, *y.

5. Send (kP,M;x,M,y)toA.

Decryption : (A)

1. Compute a(kP) =(x, y).

2. Compute My x / x and M, y / y, then
recover the message M = (M;, M).

As the algorithm 5, the EC Elgamal protocol is
implemented by scalar multiplication, field multiplication
and field inverse multiplication.

3.3 ECDSA

EC Digital Signature Algorithm (DSA) is the elliptic
curve analogue of the DSA, which is most famous
signature protocol. This protocol needs not only the
elliptic curve operations, such as scalar multiplication,
field multiplication and field inverse multiplication, but
also big integer multiplication, big integer inverse
multiplication, modular operation and SHA-1, which is
the 160-bit hash function. In the ECDSA, A (Alice)
generates the signature with his secret key and B (Bob)
verifies the signature with A’s public key. Algorithm 6 is
the ECDSA protocol which A signs the message m, and B
verifies A’s signature.

Algorithm 6. ECDSA Protocol

Key generation : (A)

1. Select a random integer d from [1, n-1].
2. Compute Q =dP.

3. A’spublic key is Q; A’s private key is d.

Signature generation : (A)
1. Select a random integer & from {1, n-1].

2. Compute kG = (x,, y;) and r = X, (mod n).

3. Ifr=0 thengotostep 1.

4. Compute k ! (mod n).

5. Compute s = k ' {SHA-1(m) + dr} (mod
n).

6. Ifs=0then gotostep 1.

7. Send m and (r, s), which is A’s signature
for the message m, to B.

ITC-CSCC 2002

Signature verification : (B)
1. Verify that r and s are integers in [1, n-1].
Compute e = SHA-1(m).

2.

3. Compute w=s "' (mod n).

4. Computeu;=e*w{modn)andu, =r*w
(mod n).

5. Compute ;P + u;Q = (x4, y;) and v = x,
(mod n).

6. Accept the signature if and only if v=r.

As can be seen in the above algorithm, we need
various operations for implementing the ECDSA
protocol. But we are only concerned with the elliptic
curve operations, because these operations dominate the
execution time of the protocol schemes. In this protocol,
there are two operations, which are the scalar
multiplication in sigpature verification step 5 and
signature generation step 2 and the point addition in
signature verification step 5.

4. ECC coprocessor implementation

4.1 ECC coprocessor structure

Figure 1 shows a structure of our ECC coprocessor. The
ECC coprocessor consists of an interface block, a
register file block, an ECC adder, a degree comparator
block and an ECC controller. The ECC coprocessor we
have implemented is defined over the field GF (2'®),
which is a SEC-2 recommendation [6), with this field
being defined by the field polynomial Fx) =x'* + x” +
B+

e Regiater File

ARM it e Ab

lﬁ ,

13
i
B
H

L}

hh""-"

el

5
;

Lr

ek (i

paloadi

§t CeELln

3
3

o
Ttk
B
Tl
B

¢

ng
i

Figure 1. Block diagram of the ECC coprocessor

The interface block controls the communications

between main processor and coprocessor. It includes the
Advanced Microcontroller Bus Architecture (AMBA) for
the testing on the ARM emulator system. The register file
block stores the input, output, and intermediate values. It
has five registers, which are the N register, the P1.x
register, the Pl.y register, the P2.x register, and the P2.y
register. One polynomial multiplier and one polynomial
inverse multiplier and two polynomial adders are merged
into the ECC adder block so as to perform the scalar
multiplication efficiently and optimize the hardware size.
The polynomial multiplication and the polynomial
inverse multiplication can be also calculated
independently. At chapter 2, these two operations are
need for the EC Elgamal protoco} implementation. Figure
2 shows the block diagram of the ECC adder block.

vﬂ@ “v@\i

Figure 2. Block diagram of the ECC adder block

The degree comparator block, show in figure 3, is used
for finding and comparing degree of polynomials when
the polynomial inverse multiplication is performed at the
ECC adder. It also determines whether the input points of
the ECC adder are the infinite points or not,

deg sk 1]
ey 11

dog g M
iy —e—f

Figure 3. Block diagram of the degree comparator block

The ECC controller controls all other blocks according
to the value of control register. It has built-in the Non-
Adjacent Format (NAF) converter for enhancing the
performance of the ECC coprocessor; NAF method for
scalar multiplication can reduce the point addition
operations by approximately 17%.

4.2 ECC coprocessor operations

Our ECC coprocessor can do four independent
operations for ECC protocols implementation, which are
a scalar multiplication, an Elliptic Curve point addition, a
polynomial (field) multiplication and a polynomial (field)
inverse multiplication. These operations are petformed
differently according to controller’ s behavior and the
input-output registers’ action in the register file block.
Table 1 presents the control register and the operations of

ITC-CSCC 2002

the ECC coprocessor.
Table 1 : ECC coprocessor operations

Control ECC coprocessor operation
Register
Bit Input Output
0 Coprocessor start/stop
Scalar multiplication
1 N €&k P2x,P2y €
PI.x,Ply € P(x,y) kP
EC point addition
2 P1.x,Ply € P(x,y) P2.x, P2y ¢
P2.x, P2y € G(x’,y") P+G
Polynomial multiplication
3 Pl.x € a(x) P2x €«
P2.x € b(x) a(x) * b(x)
Polynomial inverse multiplication
4 Pl.x € b(x) P2x €«
P2.x € a(x) a(x) / b(x)
5 Coprocessor internal register reset

5. ECC coprocessor performance

We have measured the performance of our ECC
processor with an ARM emulator board, shown in Figure
4. The crypto processor is implemented on the Xillinx
Virtex-1000 FPGA of the emulator board and tested at
20MHz clock frequency. The results are shown in Table
2. It is also synthesized with SAMSUNG 0.35pm CMOS
technology and has a hardware size of 18k gates.

Figure 4. Photograph of the ARM emulator board for testing
the ECC processor

Table 2. ECC processor operation times

. Operation
Operation time
Scalar multiplication (kP) 12.3 ms

Point addition (P + G) 56 us
Polynomial multiplication
9 us
a(x) * b(x)
Polynomial inverse 37 us
multiplication (a(x) / b(x)) #

6. Conclusion

We have analyzed the ECC protocols and designed the
ECC coprocessor over the field GF (2'%%). The ECC
processor can calculate various operations for
implementing ECC protocols, which are a scalar
multiplication, an Elliptic Curve point addition, a
polynomial multiplication and a polynomial inverse
multiplication. It is synthesized and tested with Xilinx
FPGA and its average operation time for scalar
multiplication is 12.3msec. For future works, we will
include the high performance ECC processor, which is
able to operate for various elliptic curve, and
countermeasure hardware to prevent illegal attacks such
as simple power analysis (SPA) attack and differential
power analysis (DPA) attack.

References

[1] Certicom research, “The
Cryptosystem”, Certicom, April 1997.

[2] Darrel Hankerson, Julio Lopez Hemnandez, Alfred
Menezes, “Software Implementation of Elliptic Curve
Cryptography over Binary Fields”, CHES 2000, page
1-24. 2000.

[31 N. Koblitz, “Elliptic curve cryptosystems”,
Mathematics of Computation, number 48, pages 203-
209, 1987.

[41 V.S. Miller, “Use of elliptic curve in cryptography”,
Advances in Cryptology ~ Proceedings of
CRYPTO’85, Springer Verlag Lecture Notes in
Computer Science 218, pages 417-426, 1986.

[5] R.L. Rivest, A. Shamir, and L.M. Adleman, “4
method for obtaining digital signatures and public-key
cryptosystems”, Communications of the ACM, volume
21, pages 120-126, February 1978.

[6] Certicom research, "SEC 2 : Recommended Elliptic
Curve Domain Parameters", October 1999.

[7] Richard Schroeppel, Hilarie Orman, Sean O'Malley,
"Fast Key Exchange with Elliptic Curve Systems", TR-
95-03(Tucson, AZ: University of Arizona, Computer
Sciences Department, 1995)

[8] Alfred J. Menezes, Paul C. van Oorschot, Scott A.
Vanstone, Handbook of Applied Cryptography, CRC
press, 1997.

Elliptic Curve

ITC-CSCC 2002

