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Abstract:  Sampling rate conversion widely used
in subband coding, A/D and D/A transitions etc. is an
important techniques. Nyquist filters and the filter banks
have been used for the sampling converter. However,
they need many memories and, whenever the sampling
rate is changed, it is necessary to redesign filters. Then,
we propose design method of the new interpolation ker-
nel. Design method of the new interpolation kernel is
approximated each piecewise of lowpass filter by »th
polynomials. The proposed kemel is not redesigned,
whenever the sampling rate is changed. The proposed
kernel is a continuous function, the sampling rate of the
rational number can be converted.

1. Introduction

Sampling rate conversion widely used in subband
coding, A/D and D/A transitions etc: is an important
techniques [1], {3]-[7]. In general, the sampling rate con-
version is divided into the interpolation and sampling.
The interpolation creates the continuous function from
the discrete signal data. The sampling newly creates the
discrete signal data from the continuous function. This is
a convolution of the input signal and the interpolation
kemel to create the continuous function from a discrete
signal. An Impulse response of the ideal interpolation
kernel is sinc function obtained by the Fourier transform
of a square wave. However because this kernel is a
polynomial with infinite length, it cannot be used as
interpolation kernel.

Recently, the method of the sampling rate conversion
by using the filter bank is proposed in the field of the
digital signal processing [5]. However, to convert the
fractionally sampling rate M/N, the input samples are
first interpolated up by M and passed through a lowpass
filter and then decimated down by N in this method. In
the application of sampling rate conversion from CD to
DAT the M and N are 160 and 147, respectively. As a
result, computational complexity may become very large.
Moreover, this method is necessary to redesign the filter,
whenever the sampling rate is changed.

Then, we proposed an interpolation kernel approxi-
mated by using some quadratic functions for piecewise
the sinc function [2]. This method is not necessary to
redesign the kernel, whenever the sampling rate is
changed. However, to obtain a large attenuation in the
stopband, many quadratic functions are required.

In this paper, hence, we present a new interpolation
kernel and its design method. The proposed kernel is
approximated to the impulse response of lowpass filter
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by some # th polynomials. The kernel has a good stop-
band performance because it is designed by using the
standard linear programming in the frequency domain.
Moreover, the proposed kernel is unnecessary redesign,
whenever the sampling rate is changed. In addition, a
fractionally sampling rate can be converted, so that the
proposed kernel is a continuous function. Finally, use-
fulness of the proposed kemel is verified through the
examples.

2.Kernel
In general, a reconstruction of a piecewise continuous
function from discrete data is taken to be a linear combi-
nation of input signal and a reconstruction kernel. For
unit spaced samples, this is
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where, f, is the sample value and y(x) is the inter-
polation kernel.

The kemnel approximated by the some quadratic func-
tions is shown as follows:
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where N and S are number of quadratic functions
used in one piecewise and number of piecewise, respec-
tively. a b,, and c,, are coefficients of the

quadratic function. Fig.1 shows an outline of the kernel
using quadratic functions. However, large S and
N are required so that kernel is realized large attenuation
in the stopband. Therefore, the computational complexity
becomes very large.

Thus, we approximated the proposed a new kernel by
using # th polynomials for each piecewise. This kernel
can be obtained as follows:
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Fig.1 The outline of a kernel using quadratic functions

jf(x) =g X"+, X+
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is jth coefficient of »th polynomials in

where, aq,

the ith piecewise, and S is a total number of piece-
wise. Fig.2 shows an outline of the proposed kernel using
n th polynomials.

Now to produce a useful interpolation kemnel from eq.
(3), it should be the condition of zero intersymbol inter-

ference. That is, it becomes f(x)=0 in integer value

except x =0. Substituting the condition of zero inter-
symbol interference into eq. (3), we obtain

f;(x)zaq,,(xn*l)-i-qvﬂ(){"‘ —1)+...
+a,(¥ 1)+, (x-1) (0<x<])
)=a, (¥ +{1-2)x+{1-2) ()}
T
2

ooy (F ~3r42) , (@)

{1=x<

fi(x) =as_m( L +Ax+AB-C )
+ag (! +A x4 A7 BC)
oo, ( ¥ +Ax+AB-C ) (S —ISxSSj

where, A" =(S-1)"-5", B=—(5-1)and

=(S-1)".

3. Design method of kernel
In this section, the design method of the proposed
kernel is shown.

In order to determine the coefficients a, ; with
1<i<S and 1< ;<K . We consider the approxima-
tion in the time domain to the sinc function. However,
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Fig.2 The outline of proposed a kernel (S=3)

the sinc function has infinite length polynomials. Thus
we consider to optimize g, in the frequency domain.

With the condition of phase characteristics, eq. (4) can be
written as

s XK
F@)=Y, Y f,(T)cosiaT), ©)

j=li=(j-1)K
where, K is a sampling point in one piecewise.
Next, let the ideal frequency characteristic be

1 passband
D(w) , )
1 stopband
and weighting function be
1 passband
w (60) . Y
stopband

In order to determine the coefficients q, ,

the weighted
error of approximation E(w) is,

E(w) =W ()| D(w) - F(w)] . ®
The optimal kernel is the one for which the maximum
error E(w)is minimized over all @ . Letting & repre-

sent the maximum error, a set of linear inequalities can
be written to describe this minimax problem,

-5 <W(@)[D(w) - F(w,)], with Q, )
where Q) is a dense grid of frequency in the bands over
which the approximation is being made. Eq. (9) can for-
mally be written as linear program;

Minimize ¢

—W(w,«)i i S{(iT)cos(iw,T)— 6 < W (w,) @)
j=1i=(j-)K
. . (10)

W@)S § fieostion-6 W @)D@)
J=ti={j-1)K

Eq. (10) can be solved by using the standard linear pro-
gramming techniques.

4. Examples

To show the proposed kernel effectiveness, we con-
sider about the following examples.
4.1.Example 1

We think about the kemel design of the following
specification.

[Specification]

Order of polynomials N : 4
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Number of amplitudes S : 6

Sampling point K : 9

Rolling off rate R : 0.25

Weight # (@) : 1(All the frequencies)

The obtained kemel and its frequency characteristics
are shown in figs. 3 and 4, respectively. It’s clear from
fig.3 that the proposed kernel is the zero intersymbol
interference because f(x) is zero value for x of in-

teger number except x=0. And it’s clear from fig4
that the obtained maximum stopband attenuation is —-54
[dB]. In fig. 4, the dotted line indicates the frequency
characteristics of the kemel to be upsampling from 6 to
9, and the one point dot-dashed line indicates the fre-
quency characteristics of the kernel to be downsampling
from 12 to 9. It’s clear from fig. 4 that the frequency
characteristic of the kernel does not change even if the
sampling rate is changed. That is, the proposed kernel is
robustness to change the sampling rate.

Next if we design the kernel with the same attenuation
in the stopband, the number of the polynomial coefficient
of the proposed kernel is less than one of the previous
kernel by using ref. [2]. That is the number of the poly-
nomial coefficient of the proposed kemnel in 19 though
one of previous kernel in 61.

4.2.Example 2
It is time when this example changed the order of 5
and amplitudes into 9 as for the number of polynomials.
[Specification]
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Fig.4 The frequency characteristic of the 4th polynomials

Order of polynomials N : 5

Number of amplitudes S : 9

Sampling point X : 9

Rolling off rate R :0.25

Weight W (@) : 1(All the frequencies)

The obtained kernel and its frequency characteristics
are shown in figs. 5 and 6, respectively. Moreover, the
frequency characteristics of the obtained kernel to be
upsampling from 6 to 9 is shown by fig. 6 the dotted line.
And, the frequency characteristics of kemel to be down-
sampling from 12 to 9 is also shown by fig. 6 the one
point dot-dashed line. It’s clear from fig.3 that proposed
kernel is the zero intersymbol interference becomes
f(x) is zero value for x of integer number except

x=0 as well as 4th polynomial. And it’s clear from
fig.4 that the obtained maximum stopband attenuation is
—75 [dB]. A large attenuation in the stopband is obtain by
enlarging N and S.

Next if we design the kernel with the same attenuation
in the stopband, the number of the polynomial coefficient
of the proposed kernel is less than one of the previous
kernel by using ref. [2]. That is the number of the poly-
nomial coefficient of the proposed kernel in 37 though
one of previous kernel in 181.

4.3.Example 3
In this example, it is shown to convert the fractional sam-
pling rate.

The basic specification is the same as example 2.
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Fig.5 The kernel of the 5th polynomials
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Fig.6 The frequency characteristic of the 5th polynomials
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[Specification]
Order of polynomials N : 5
Number of amplitudes S: 9
Sampling point X : 9
Rolling off rate R :0.25
Weight W (@) : 1(All the frequencies)

In fig. 7, the frequency response of the original kernel
is shown by the solid line and the obtained kernel to be
upsampling from 9to 12.5 is shown by the dotted line. It
is clear from fig. 7 that the frequency characteristic of
kernel does not change even if the sampling rate is
changed into the rational number.

5. Limit of maximum of attenuation
In this section, the relation between the order of
polynomial and the maximum attenuation in the
stopband is described.
{Specification]
Sampling point K : 9
Rolling off rate R :0.25
Weight W (w): 1(All the frequencies)

It’s clear from fig. 8 that the maximum attenuation in
the stopband increases for 4th order polynomial and 5th
order polynomial if the number of piecewise is increased.
However, the maximum attenuation in the stopband for
the kernel with 4th order polynomial does not change
even if the number of piecewise S is increased more
than 7. Therefore, the limit in the stopband attenuation of
the kemel with 4th polynomials in the stopband
attenuation is -57 [dB]. Similarly, the attenuation in the
stopband for the kernel with 5th order polynomial is -84
[dB].

6. Conclusion
In this paper, we proposed the interpolation kernel by
using n th polynomials and its design method. The
proposed kernel is approximated to the impulse response
of lowpass filter by some n th polynomials. The kernel
has a good stopband performance because it is designed
by using the standard linear programming in the
frequency domain. Moreover, the proposed kernel is
unnecessary redesign, whenever the sampling rate is
changed. In addition, a fractionally sampling rate can be
converted, so that the proposed kernel is a continuous
function. Finally, usefulness of the proposed kernel is
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Fig.8 Limit of maximum of attenuation

verified through the examples.
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