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ABSTRACT

Subspace analysis (which includes PCA) seeks for feature sub-
space (which corresponds to the eigenspace), given muitivariate
input data and has been widely used in computer vision and pat-
tern recognition. Typically data space belongs to very high dimen-
sion, but only a few principal components need to be extracted. In
this paper I present a fast sequential algorithm for subspace anal-
ysis or tracking. Useful behavior of the algorithm is confirmed by
numerical experiments.

1. INTRODUCTION

The task of pattern recognition is to classify each data in an un-
labelled set of data (test set), given a set of data labelled with its
class (training set). Statistical pattern recognition relies on infor-
mation coding (data representation). For example, linear data rep-
resentation decomposes a given set of data into a linear sum of
basis vectors. Feature vectors are obtained by projecting the data
onto the subspace spanned by the basis vectors. Popular methods
are factor analysis and principal component analysis (PCA). The
eigenface method [8, 11] might be one exemplary subspace analy-
sis technique in pattern recognition.

In computer vision and pattern recognition, one often encoun-
ters into a set of huge dimensional data and wish to extract a small
number of features which is able to represent the data as well as
possible. The singular value decomposition (SVD) is a numeri-
cally robust method which calculates the eigenvectors of the co-
variance matrix, however, it is computationally expensive, espe-
cially for the case of data with high dimension. For adaptive com-
putation of eigenvectors, a variety of PCA neural networks have
been developed [1], most of which are gradient-based learning al-
gorithms, so their convergence is very slow.

Recently probabilistic model-based methods for subspace anal-
ysis have been proposed. These include probabilistic PCA (PPCA)
[10]), EM-PCA [5}], mixtures of factor analyzers [2], and mixtures
of probabilistic principal component analyzers [9]. All these algo-
rithms are employ the EM learning which is an iterative maximum
likelihood estimation method in the presence of hidden variables.
PPCA and EM-PCA are batch algorithms, thus, when a new data
arrives, whole calculation should be carried out again. In order to
overcome this drawback, I present a sequential EM learning algo-
rithm.

2. LINEAR GENERATIVE MODEL

The linear generative model assumes that the set of m dimensional
observed vectors {x:} is generated from a corresponding set of
latent variables {8} by

Ty = A8 + vy, (H

where 8; € R" (n < m) and v is Gaussian noise vector that is
assumed to be statistically independent of s;.

In standard factor analysis, latent variables 8 are assumed to
have a unit isotropic Gaussian distribution, i.e., 8 ~ N'(0, I). The
noise model is Gaussian, i.c., v ~ A(0, £) with X being a diag-
onal matrix. Given this formulation, the model for & is also Gaus-
sian, & ~ N(0, C) where the covariance matrix C = £+ AAT.
Due to the diagonality of X, the observed variables & are con-
ditionally independent given the values of the latent variables s.
Thus the reduced-dimensional distribution 8 is intended to model
the dependencies between the observed variables. This is in con-
trast to PCA which treats the inter-variable dependencies and the
independent noise being identical. Factor analysis seeks for a fac-
tor loading matrix which best model the covariance structure of
the observation data. In general, the columns of the factor load-
ing matrix do not correspond to the principal subspace of the data.
Maximum likelihood solution to factor analysis can be found in

[7}.

3. PROBABILISTIC PCA

This section reviews PPCA [10] for the case of isotropic Gaussian
noise model and zero noise limit. In the limit of zero noise, PPCA
is known as EM-PCA [5].

3.1. Isotropic Gaussian Noise

In general factor loadings A differ from the principal axes due to
the diagonal noise model . Principal components emerges when
independent noise variables have common variance a2, i.e., noise
is isotropic Gaussian. Recently Tipping and Bishop [10] showed
that under an isotropic noise structure, the maximum likelihood
estimator Ay spanns a principal subspace (which consists of
scaled and rotated principal eigenvectors of the sample covariance
matrix R) even when the covariance model is approximate.

We assume an isotropic noise model, v ~ N'(Q,a*I), which
implies a probability distribution over data space for a given 8
given by

1
p(x|s) = ——x €

a2
— xp{ o llz - As] } @

A Gaussian prior over the latent variables is used, i.e.,

1 1
o) = x| -5 el . ®
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The marginal distribution of the data has the form of

/ p(z|s)p(s)ds

i

p(x)

2m % |c|t 2

where the model covariance is

C=AAT +°I (5)
Then the log-likelihood of observing the data under this model is
N
L = ) logp(z:|f)
t=1

- —]—\%T-n—log(%) ~ %log!CI - -IZXU{C"'R} , (6)

where R is the sample covariance matrix given by

1 &
R = N Zwtwf @)
t=1

It was shown in [10] that with C given by (5), the only non-zero
stationary points of Z:;i occur for

A=U, (A -0’1} @, ®)

where the n column vectors in U, are eigenvectors of the sample
covariance matrix R, with corresponding eigenvalues in the diag-
onal matrix A, and @ is an arbitrary n x n orthogonal rotation
matrix.

Following Rubin and Thayer [7], Tipping and Bishop derived
an EM algorithm for maximizing the log-likelihood (6). Here I
briefly review the EM algorithm for probabilistic PCA. See [10]
for more details.

In the framework of EM, the latent variables {s:} are treated
as missing data. The complete-data log-likelihood L, is given by

N
Le = Zlogp(zt,stiﬂ)
t=1
al m 1
_ 2 2
= ; [const - —2—loga = 557 lloe — Asel|
1
—Es?st] . ©
Algorithm Outline: PPCA
E-step Compute sufficient statistics
(8:) = M ATz, (10)
(s:sl) = o*M '+ <a><sl >, (D

where M = oI + AT A.
M-step Re-estimate the parameters A and o by

N N -1
i-= <Zm, (J)) (Z(s,sf)) , (12)
t=1 t=1
o = %{U[R—RZM"IET]}. (13)

3.2. Zero Noise Limit

Probabilistic PCA algorithm described in previous section is able
to find scaled and rotated principal eigenvectors of the sample co-
variance matrix of the observed variables. It was derived in the
framework of factor analysis with isotropic Gaussian noise model.
PCA is a limiting case of the linear Gaussian model [6] (which fac-
tor analysis is based on) as the covariance of the noise v becomes
infinitesimally small and equal in all directions. Hence a simple
EM algorithm for PCA can be obtained by taking the zero noise
limit into account. In the zero noise limit (62 — 0), the likelihood
of a data point & is dominated solely by the squared distance be-
tween it and its reconstruction As. In such a case, the posterior
collapses to a single point and the covariance becomes zero, i.e.,

Il

N({(ATA) 1A%z, 0)
6(s— (ATA)1ATg). (14)

p(sz)

W

Now inference reduces to simple least squares projection, which
leads to a simple EM algorithm [5] that is summarized below.

Algorithm Outline: PPCA (zero noise limit)

E-step Inference is carried out by LS projection,
S=(ATA)'ATX, (15)
where

S=[81,...,8N],
X =x1,...,zN]. (16)

M-step Re-estimate the matrix A by

A=XxS (ssT)". (17)

4. OJA’S SUBSPACE RULE

Let us consider a linear feedforward neural networks whose output
y, € R" is described by

y, = Wy, (18)

where W € IR™*™ is a synaptic weight matrix.
The Qja’s subspace learning rule [4] is given by

Wi W+ myt:t:f {I - W?W:}

Wetn {yal ~yalW.}, 19

where 7: > 0 is the learning rate. For the case of n = 1, the
subspace rule (19) becomes the well known Oja’s algorithm [3])
which is known to extract the eigenvector associated the largest
eigenvalue of the input data covariance matrix. When the conver-
gence of (19) is achieved, the synaptic weight matrix W corre-
sponds to the eigenspace which is spanned by the principal eigen-
vectors of the input data covariance matrix.

Besides the Oja’s subspace rule, a variety of PCA neural net-
works have been developed (see [1] and references therein).
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5. SEQUENTIAL EM FOR PSA

5.1. Separable Least Squares

The PPCA algorithm for the case of zero noise limit can be also de-
rived in the framework of separable LS method. Moreover we can
employ the sequential LS (also known as recursive LS) in order to
develop an on-line algorithm which learns principal subspace of
the observed variables.

As pointed out in [5], in the zero noise limit, the likelihood of
a data point & is dominated solely by the squared distance between
it and its reconstruction A s. In such a case, ML estimation of both
A and 8 becomes a separable LS minimization problem. The LS
estimates, A and S are computed by

A,8 = min || X - AS|%. (20)
AS

The separable LS minimization is carried out in two steps. First
we minimize (20) with respect to A with S being fixed. It leads to

A=XS (ssT)_1 @1)

which corresponds to the M-step in PPCA (for the case of zero
noise limit). "

The estimate A is substituted back into (20), then we obtain a
new criterion which is a function of S only

. 1 2
min “XPS ” , (22)
S F
where P¢ is the orthogonal projection matrix given by
-1
P:=1-87 (ssT) s. 23)
The minimization of (22) is achieved when
AT ~\~1 ~
§= (ATA) A"x, 24)
which correspond to the E-step.

5.2. Sequential LS

For sequential estimation of A and s, we consider the weighted
LS minimization problem where the objective function is given by

t
E=) B Fllex — Asil®, 25)

k=1

where 0 < 8 < 1 is the forgetting factor.

Our objective is to compute A; and 8., assuming a good esti-
mate of 8,1 (or equivalently A;_1) is available. The exponential
weighting is used to de-emphasize old data in a time-varying envi-
ronment. Setting the derivative of £ with respect to A to be zero,
then we have

A = Ras,t [Rss,t]_l s (26)
where
t
Reste = Zﬂt_kmksf,
k=1
t
Rsa,t = Z,Be—ksksf. (27)
k=1

Define P; = R;,l,, and apply the matrix inversion lemma.
Then we have a recursion equation for updating P;

1 Pt—lstscter—l}
Pi==<sPi | — ——F—>. 28
' IB{ =t ﬂ+sfPt_1s¢ ( )
Using the recursion (28), the adaptation for A is given by
At - st,tPt
T
8; Pi-1
= Ai1+[ee - At-18) 57— (29
t—1 + [ tlt]ﬁ+3?Pt—13t (29)
Algorithm Outline: Sequential EM
E-step Estimate s; by the LS projection
-1
si= (AT A1) ALz (30)
M-step Estimate A; by
T
8y Pi1
A = A e 31
t ¢ 1+etﬂ+3tTPt—13t’ 3n
where
€ = @t — A¢—18:, (32)

6. A NUMERICAL EXAMPLE

A simple numerical example is given here to confirm fast con-
vergence and high performance of the proposed algorithm. The
algorithm is compared with the Oja’s subspace rule [4]. The 3-
dimensional observation vector & was generated with its covari-
ance matrix given by

1.391 0173 —0.536
0.173 0.032 -0.078 |. (33)
—-0.536 -—0.078 2.584

As a performance measure, I use the subspace error (SE) which
is defined by

SE = % "PﬁUnUZ“ , (34)

where P is the projection matrix onto the orthogonal subspace,
ie.,

Pi=I-4 (ATA)_l AT, 35)

which is decided by the estimated values of A and U,UZ is the
projection matrix onto the signal subspace that is computed from
the SVD of the covariance matrix of the input data. When the
estimated A spanns the true signal subspace, P should orthog-
onal to U,U; . Hence the SE defined above is able to serve as a
performance measure.

The matrices Ao (for the sequential EM) and W (for Oja’s
subspace rule) were initialized as a random matrix whose elements
are drawn from uniformly distributed random variables over [0,1].
The learning rate in the Oja’s subspace rule was 7; = .01. In Fig.
1, one can observe that the sequential EM algorithm converges to
a solution much faster than the Oja’s subspace rule and even after
convergence, the former shows slight better performance than the
latter.
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Figure 1: Convergence comparison for sequential EM algorithm and Oja’s subspace rule in terms of subspace error.

7. CONCLUSION

I have described some relations between the EM algorithm and
separable LS fitting in PPCA with zero noise limit. Based on
this observation, I have developed a sequential EM learning for
subspace analysis which is nothing but a sequential LS algorithm.
The sequential EM algorithm can be easily extended to mixtures
of PCA, which is currently under investigation.
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