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Abstract: This paper studies the bifurcation of combi-
natorial oscillations in coupled Duffing’s circuits when
symmetry is broken. The system consists of two periodic
forced circuits coupled by a linear resistor. These two
periodic external forces are sinusoidal voltage sources
with various phase-shift. We investigate the relation be-
tween phase-shift and periodic solutions by analyzing
many bifurcation diagrams.

1. Introduction

A nonlinear resonance is one of the typical phenomena in
nonlinear circuits with a periodic external force. A circuit
containing a saturable core [1] described by a Duffing’s
equation can exhibit a typical nonlinear resonance. If we

couple many nonlinear oscillators in one system, it can

exhibit a great variety of fundamental dynamical phe-
nomena. So the system of coupled oscillators has at-
tracted a great deal of attention recent years. Here, we
consider a basic and typical model coupled by two
Duffing’s circuits.

According to our previous researches, coupled
Duffing’s circuits with symmetry in system and periodic
solutions have been studied [2]. However, in this paper,
two oscillators are chosen as ones without symmetry; as
a result, periodic solutions also lose their symmetry.
Those solutions that had same amplitude and bifurcation
structure in symmetrical condition will be separate and
independent due to symmetry breakdown.

The coupled Duffing’s circuit,

Figure.1

We will discuss the variation of periodic oscilla:
tions by changing the phase-shift of two external forces
We draw many bifurcation diagrams, and emphasize dif:
ferences between symmetry and asymmetry.

2. Circuit Equations

Let’s consider a coupled Duffing’s circuit shown in Fig.1
With the notations in the figure, we can describe the cir-
cuit equations as follows:
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In this circuit, we assume the characteristic of nonlinear
inductors as following cubic functions:
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And normalizing the state variables and coefficients of
Egs.(1) as:
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The external forces ¢, and e, are sinusoidal voltage
forces with phase-shift 8 described below:
¢ ()= Bsin(ax), e,(r) = Bsin(ax+6) )

Substitution yields
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where we fix the system parameters as:
k=02, ¢,=0, ¢; =1, w=1 )

3. Combinatorial Oscillations

In our research, we couple two Duffing’s oscillators with
a linear resistor, so that these two oscillators can interact
through voltage difference of this resistor. Because the
conjunction is linear element, the global oscillation on
weak coupling condition [3] can be considered as the
combination of oscillations in each subsystem. Therefore,
we call the global dynamic phenomena in a linearly cou-
pled system as combinatorial oscillations.

Let us consider the symmetry of this coupled
Duffing’s circuit. Observing Eqs.(5), note that elements
except for periodic external force are identical, the sym-
metry of the system is determined by # which is a
phase-shift between two oscillators. Obviously, We can
conclude that only @ =0 (in-phase) and O=x
(anti-phase) are two symmetrical conditions in this
bi-coupled system. They are complete symmetry and in-
version symmetry respectively, If 8 equals other value,
the system equation will not satisfy symmetrical condi-
tion any more (see Fig.2). This type of asymmetrical
coupling is a much common case, because in real cou-
pled systems, a delay often exists between the subsys-
tems [4].

Complete Inversion Asymmetry
Symmetry Symmetry
0 n (2]

Figure.2 Symmetry and phase-shift.

4. Bifurcation and resonance

To investigate the combinatorial oscillations when sym-
metry is broken, we draw the bifurcation diagrams by
fixing @ as uniform distributed values from 0 to .
Although both 0 and 7z are discussed in our research
before, we also show them here as comparable data. We
draw bifurcation diagrams in (B, J)-plan, which repre-
sents the relation between external force and coupling
intensity.
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Figure.3 (a) and (b) are bifurcation diagrams of
fixed point in (B, J)-plan when 8 equals 0
and #/18 respectively. (¢) and (d) are sche-
matic amplitude characteristic diagrams when B
change along L1: § =0.1,

Firstlyy, we compare the bifurcation between
phase-shift is 0 and #/18 in Fig.3. We draw a sche-
matic diagram of amplitude characteristic of periodic
solutions by changing B along the line L1: § =0.1, where
oD, {D and ,D represent stable, 1-dimensional un-
stable and 2-dimensional unstable periodic solution, re-
spectively. If 8 =0, a pair of combinatorial solution
(bold curve) branches out by D-type of branching. Be-
cause system is symmetrical, these two combinatorial
solutions are resonant symmetrically, thus, amplitude
characteristic and bifurcation structure of them are just
the same, so we draw them as one curve. However, if
two coupled oscillators have a phase-shift, even if a
small value, the system will lose its symmetry. Thus, the
solutions can’t keep symmetrical, they separate and
D-type of branching tune to tangent bifurcation. More-
over, they can occur their tangent bifurcation independ-
ently, as shown in the Fig.3(d).

Then we discuss the inversion symmetrical case.
Bifurcation diagrams when #=17z/18 and f=x
are shown in Fig.4. Schematic amplitude diagrams when
B change along L1: 6 =0.1 and L2:§ =05 are drawn
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Figure.4 (a) and (b) are bifurcation diagrams
of fixed point in (B, §)-plan when @ equals
0 and 177/18 respectively. Below ones are
schematic amplitude characteristic diagrams
representing variations of periodic solutions
by changing B along line L1: § =0.1 (¢, d);
andL2: 5 =0.5 (e, ).

respectively. In Fig.4(a, b), dashed curves represent
Neimark-Sacker bifurcation. Observing Fig.4, we can
conclude similar results to complete symmietrical case.
Note that the curve representing variation of periodic so-
lutions is one continuous curve while it is two independ-
ent curves in Fig.3(d). Actually, this phenomena is ap-
pear when @ is larger than 3#/18, at the same time,
Neimark-Sacker bifurcation occurs (Please see Fig.5).
Neimark-Sacker bifurcation is a close curve only on in-
version symrmetrical condition; it is tangent to a tangent
bifurcation curve in asymmetrical case, correspondingly.
Above two cases are discussed when phase-shfit is
only slightly differ from symmetrical condition. In Fig.5,
we show bifurcation diagrams when we change
phase-shift step by step. In this way, we can see the

change of bifurcation when system is far away from
symmetry. We see the most obvious variation occur when
phase-shift between #=57/18 and 8 =8x/18. In ad-
dition, variation between #=137/18 and & =147/18
is remarkable. We found that two tangent bifurcation
curves connect together and another occur a peak (see
the enlarge region in bifurcation diagram of
6=147/18). When § is larger than this peak value,
amplitude characteristic curve separate instead of con-
tinuous one.

5. Concluding Remarks

We investigated the bifurcation and resonance of a cou-
pled Duffing’s circuit losing its symmetry for the
phase-shift between two oscillators. Periodic solutions on
symmetrical and asymmetrical condition are compared.
We found that D-type of branching become two inde-
pendent tangent bifurcation. The amplitude characteristic
is a continuous curve on some condition, see Fig.3(d)
and Fig.4(c,d).

The results are worthwhile because it can be refer-
enced when we consider a poly-phase coupled nonlinear
oscillators. In a poly-phase coupled system, every oscil-
lator can be regard as one coupled with its neighborhood
by a specific phase-shift.

A combinatorial resonance phenomena caused by a
finite number of coupled oscillators is an interesting
problem in nonlinear circuit open to the future.
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Figure.5 Bifurcation diagrams of fixed point when phase-shift change step by step from & =27/18
to @=16x/18. All of bifurcation diagrams are drawn in (B, &) -plan. For convenience, we omit de-
notations of axes in diagrams. Some regions difficult to be recognized are enlarged correspondingly.
Dashed curves represent Neimark-Sacker bifurcations. Note that the coordinate of each diagram is ad-
justed to fit dimension of bifurcation curves.
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