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Abstract: This paper describes novel methods to con-
struct fuzzy inference rules with gradient descent. The
present methods have a constructive mechanism of the
rule unit that is applicable in two parameters: the cen-
tral value and the width of the membership function
in the antecedent part. The first approach is to cre-
ate the rule unit at the nearest position from the input
space, for the central value of the membership function
in the antecedent part. The second is to create the rule
unit which has the minimum width, for the width of
the membership function in the antecedent part. Ex-
perimental results are presented in order to show that
the proposed methods are effective in difference on the
inference error and the number of learning iterations.

1. Introduction

A number of approaches have been studied on fuzzy
modeling, with the object of automatically construct-
ing fuzzy inference rules utilizing the learning process
[1], [2]. They are aimed at drastically reducing the pro-
cessing labor by applying the learning function to the
tuning of fuzzy inference rules [3]-[9]. With respect to
the constitution of fuzzy inference rules, the reduction
methods [10} have been introduced in order to minimize
the inference error and to shorten the learning process.
In the techniques, the rule which seems to be little influ-
ence on the inference error is removed, and the methods
proceed with learning by gradient descent. Thus, the
extraction of appropriate rules become possible by re-
ducing the number of redundant rules. However, when
the reduction techniques were adopted, the different re-
sults were shown according to the application of various
functions.

In this paper, we present novel methods of rule con-
struction in fuzzy modeling by using gradient descent.
the present approaches are described with constructive
methods applicable to two parameters: the central value
and the width of the membership function in the an-
tecedent part. The first approach is to create the rule
unit at the nearest position from the input space, for
the central value of the membership function in the an-
tecedent part. The second is to create the rule unit
which has the minimum width, for the width of the
membership function in the antecedent part. Experi-
mental results are presented in order to show that the
validity of the present methods is confirmed.

2. Fuzzy Inference Rules and Reasoning
Methods

The simplified fuzzy reasoning which treats the conse-
quent part as the reasoning method a¢ the real number
is used. When the input is (z1, 22, '+, z,) and the
output is y, the procedure is expressed as follows:

R': If £; is M;; and ---
then y is w;,

and z, is M;,

where M;; is a membership function in the antecedent
part, and w; is a real number in the consequent part.
The membership function M;; in the antecedent part
is set separately for every rule, and has the index ¢ for
the rule number. The membership function M;; in the
antecedent part is an isosceles triangle, and can be ex-
pressed using the central value a;; and the width b;; in
the following equation. ‘

1 Zlzs—ay

b:;
Mij(z;) = (Iz; — ai| < bij/2) (1)
(lz5 — aiz] > bij /2).

The membership value y; of the i-th rule is obtained
by the following equation.

n
pi = [ [ Mis(e5). (2)
Jj=1 ’
Therefore, the reasoning result y consists of
EERyTRYY
y= Zz:l/‘z.z. (3)
i=1 Hi

The function which shows the shape of the member-
ship function is adjusted by the delta rule with the cen-
tral value a;;, the width b;;, and the actual value w; in
the consequent part. It is possible to consider the delta
rule as a minimization problem of the objective function
E which shows the error between the output value (i.e.,
y of fuzzy reasoning) of fuzzy systems and the desired
output value y,, as shown in the following equation.

E=ily-u) @
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In order to decrease the value of the objective func-
tion E, when input-output data (x1, - ,Zna,yr) of the
n + 1 dimension are given, the gradients (GF/da;,
OE/0bi;, OE/0w;) of objective function E are calcu-
lated on a;;, b;;j, and w;. Subsequently, the values of
a;j, bij, and w; are updated according to

oF

Aai; = _n“EE;; (5)
oF

Ab; = _mabij (6)
OF

Awi - —771»5-1;;, (7)

where 7,, m, and 7., are learning constants. 0E/da,;,
OE[0by;, and 8E [Ow, are calculated as

OE  _ M -
aaij = ;y=1 i (y yr)(wz ?/)
2
sgn(z; — a45) ———— 8
g ( 7 j)bz]MZJ(z'J) ( )
OF [
By —Z;;(y—yr)(wz )
1- M,(:z:,)
— 9
bij Mij () ©)
OF 5
dw, = Z:l 11 (y yr)v (10)
where
-1 (8<0)
sgn(f) = 0 (6=0)
1 (6>0).

By giving input-output data one after another and re-
peating the learning process, the shape of the member-
ship function in which the value of objective function F
becomes minimal is determined. The adjustment of the
shape of the membership function is carried out until the
inference error D(¢) shown in the following equation is
less than the desired value §, for the given input-output
data (zf, 25, ---, 2B, y?), p=1,2,--- , P.

1 & .
D(t) =5 > (" — )",

=1

(11)

where y? is an output of fuzzy reasoning.

3. Self-Tuning and Constructive
: Methods

In this section, the self-tuning and the cobnstructive
methods are described. The membership value in the
antecedent part consists of two parameters: The central
value and the width. With respect to these, the new
rule constructions of fuzzy systems seem to be regard as
the constructive approaches presented as follows,

I For the central value of the membership function in

the antecedent part, the rule unit nearest from the
central input space is created for all central values.

IT For the width of the membership function in the
antecedent part, the rule unit which has the mini-
mum width is created for all weights.

By altering the constructive standards like these, the
fuzzy reasoning systems which differ in the inference
error and the number of learning iterations are con-
structed. Essentially, these parameters are important
components which renew the value by gradient descent,
when the fuzzy system is constituted. The new tech-
niques will be effective if it is proven that appropriate
results can be obtained using those techniques. The con-
structive method is presented as follows. To begin with,
a few rules are given and learning is carried out for the
input-output data prepared in advance. Then, rules are
created sequentially to reach a prespecified number, and
self-tuning is performed until the termination condition
is satisfied. The constructive algorithm is presented as
follows.

[Constructive algorithm|

Step A1 Initialization:
Give central value a;; and width b;; in the an-
tecedent part, real number w; in the consequent
part, creation threshold §., termination threshold
dr, maximum number of learning iterations oz,
initial rule number Ry, and final number of rules
Rp. Set t + 0 and v « Ry.

Step A2 Self-tuning:

(A2.1) Let p = 1.

(A2.2) Let s, be an index selected at random
among {1,2,---, P}, for all s; # s;.

(A2.3) Allot the input-output data (237, 5%, -,
P , y:").

(A2.4) Derive the output of fuzzy inference y* per-
formed by the simplified fuzzy reasoning.

(A2.5) Adapt w; according to Eq. (7) and repeat
the fuzzy reasoning at A2.4.

(A2.6) Adapt a;; and b;; of the membership func-
tions in the antecedent part, according to Eqgs. (5)
and (6}, respectively.

(A2.7) Ifp < P, then set p «+ p+1 and go to A2.2,
otherwise set ¢t «+ ¢t + 1 and go to Step A3.

Step A3 Rule construction:

(A3.1) Calculate D(t) and AD(t) according to
Egs. (11) and (12), respectively.

(A3.2) If ¥ < Ry and AD(t) < &, then go to
A34.

(A3.3) If v = Ry, then go to Step A4, otherwise
go to Step A2.

(A3.4) Create the k-th rule according to the con-
structive method. Set ® «+ R+ {k} and v — y+1.
Go to Step A2.

Step A4 Termination condition:

If t = Trnas or AD(t) < 7, then terminate, other-
wise go to Step A2.

At steps A3.1 and A4, the value AD(¢) is calculated

as follows.
D@ = Dt ~ 1)

ADW) = —"FF_1

(2)
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Figure 1. Relation between inference error (x10~4) and initial number of rules for each constructive model. The
results are averages of 1000 trials. When R = 10, all the constructive models are equivalent to the conventional

model because there are no existing rules to create.

4. Numerical Experiments

We perform the function approximation by using the
above models. The systems are identified by the data
as fuzzy inference rules, with the utilization of input-
output data from the known function as follows:

_ COSTZ +1

(i) v 3
(i) y={_gC (z<0)

sinrz  (z > 0)
(iii) y = |sinwz|
(iv) y=|cosmz|

The domain of each variable x and output ¥, normal-
ize within [—1,1] and [0, 1], respectively. The parame-
ters are chosen as follows: 1, = 0.1, 17, = 0.1, 7y, = 0.2,
P =100, é. = 1072, §7 = 10™%, T)phaz = 100000, and
Ry =10.

Figure 1 shows the influence of the inference error on
the initial number of rules for each model. For system i,
models I and II are better in the inference error when the

initial number of rules is 7 or 8. For systern ii, model II
is superior when the initial number of rules is 9. For sys-
tem iii and iv, both of models I and II are best when the
initial number of rules is large (e.g. R = 9). The effec-
tiveness differs among the present techniques according
to the inference error. Figure 2 shows the relation be-
tween number of learning iterations and initial number
of rules for each constructive model. The effectiveness
also differs among the present techniques according to
the number of learning iterations

5. Conclusions

In this paper, we have presented novel constructive
methods of fuzzy inference rules with gradient descent
and have examined their validity through numerical ex-
periments. The approaches were the construction mech-
anisms of rule unit that was applicable in two parame-
ters: the central value and the width of the membership
function in the antecedent part. The result of numerical
experiments was that the present models led to different
effects according to the application of various functions.
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Figure 2. Relation between number of learning iterations and initial number of rules for each constructive model.
The results are averages of 1000 trials. When R = 10, all the constructive models are equivalent to the
conventional model because there are no existing rules to create.

For the future works, we will study more effective ap-
proaches.
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