Flexible Partitioning of CDFGs for Compact Asynchronous Controllers

Nattha Sretasereekul! Yuichi Okuyama? Hiroshi Saito! Masashi Imait Kenichi Kuroda? Takashi Nanya!

tThe University of Tokyo

Abstract— Asynchronous circuits have the poten-
tial to solve the problems related to parameter varia-
tions such as gate delays in deep sub-micron technolo-
gies. However, current CAD tools for large-scale asyn-
chronous circuits partition specification irrelevantly,
because these tools cannot control the granularity of
circuit decomposition. In this paper, we propose a
hierarchical Control/Data Flow Graph (CDFG) con-
taining nodes that are flexibly partitioned or merged
into other nodes. We show a partitioning algorithm
for such CDFGs to generate handleable Signal Transi-
tion Graphs (STGs) for asynchronous synthesis tools.
The algorithm allows designers to assign the maximum
number of signals of partitioned nodes considering op-
timality. From an experiment, this algorithm can flexi-
bly partition and result in more compact asynchronous
controllers.

I. INTRODUCTION

Recently, gate delay has been reduced by technological
improvements in deep sub-micron technologies. As a re-
sult, the relationship between gate delay and wire delay
has been reversed, and wire delay has become dominant
over gate delay, making it difficult to execute all the regis-
ter transitions synchronously. Using asynchronous circuits
becomes a potential solution for this problem.

Current asynchronous CAD tools have limitations to
deal with large-scale asynchronous circuits. Partition-
ing of such circuits into small sub-circuits improves the
synthesis and verification quality. Moreover, synthesiz-
ing from small partitioned specifications tends to get
more efficient circuits than large centralized specifications
1,23, 4]

Control/Data Flow Graphs (CDFGs) [5] are a well-
known register transfer level (RTL) specification for pro-
cessors. CDFGs are inherently in a hierarchical struc-
ture. Based on them, there are several works previously
solved for asynchronous circuit synthesis called hardware-
oriented and process-oriented partitioning. In hardware-
oriented partitioning, a centralized controller is separated
into small control nodes. A sub-controller corresponds to a
controller of a data-path block (i.e. functional units, mul-
tiplexers, and registers) [1, 3]. In process-oriented parti-
tioning, a control node corresponds to the controller of an
operation node (such as +, -, *, <, etc.) {2]. These tech-
niques are systematic and allow automatic partitioning.

tThe University of Aizu

However, they are not flexible. Controllers for functional
units are sometimes so large that they cannot be han-
dled by CAD tools, and controllers for operation nodes
are so small that they need large protocols between them
instead.

In this paper, we propose a hierarchical CDFG con-
taining nodes that are flexible to be partitioned or to be
merged into other nodes. We focus on only the control
part because the data path part can use library modules.
We show an algorithm for partitioning such CDFGs to
generate handleable STGs (Signal Transition Graphs) [6]
for asynchronous synthesis tools. The STGs are then syn-
thesized by Petrify [8] to obtain hazard-free asynchronous
circuits. Our algorithm allows designers to assign the
maximum number of signals of partitioned nodes. From
many synthesis results, the designer can choose the opti-
mum one. From an experiment, this algorithm can flex-
ibly partition and result in more compact asynchronous
controllers.

11. HierARcHICAL CDFG

CDFGs are commonly used as an intermediate form to
represent the control and data flow of target systems. A
leaf node of the structure may be the controller of a pro-
cess or a functional unit. Different from [1, 3] and [2],
where a functional unit controller is too large and a pro-
cess controller is too small, in this paper, a leaf node rep-
resents a group of processes.

An example of our CDFGs is shown in Fig.1(a) , and
its corresponding hierarchical structure in Fig.1(b). Here,
we consider a processor called Siml which is a memory-
based processor with two temporary registers. It has four
instructions. The data path consists of multiplexers, an
instruction register, a program counter, temporary regis-
ters A and B, ALU, and a flag register.

Each leaf node corresponds to a Data Flow Graph
(DFG) describing a data flow such as instruction fetch,
instruction decode, or execution. If a leaf node is too
large for synthesis, it can be further partitioned in the
same way as a CDFG is partitioned to have the controller
corresponding to each leaf node.

Introducing this hierarchical structure atlows the CDFG
to be flexibly partitioned within the defined primitive
nodes (seq: sequential node, par: parallel node, choice:
choice node, while: loop node, and main node) and en-
ables optimum output STGs for synthesis. Note that the

ITC-CSCC 2002

#of signals

(b)

Fig. 1. A CDFGQ of processor Siml (a) and its hierarchical
structure (b)

given CDFGs should be already scheduled and derived
from specifications such as HDL.

I1I. STG GENERATION

An asynchronous controller mainly generates control
signals for data paths and other controllers. Two signals,
namely, request (req) and acknowledgment {ack) signals
are distributed to each module to control computation
and communication. In this paper, these control signals
are executed by using a four-phase protocol [7].

STGs effectively represent the behavior of asynchronous
controllers containing concurrent events. However, syn-
thesizing asynchronous controllers from STGs may suffer
from the state explosion problem. An existing tool, Pet-
rify {8], can synthesize an STG that contains only about
20 signals.

To obtain hazard-free asynchronous controllers, the
STGs should be derived satisfy properties: bounded-
ness, commutativity, consistency, persistency, and com-
plete state coding (CSC) [8]. After partitioning, CDFGs
are tranglated into handleable STGs satisfying these prop-

[main }
[seq] ® 3]
la] (8]
¢
B
m &ieq\» __:oq«t J?q+
A_ack+ B_ack+ CAa‘ck+
2 = el I A.{eq- B_r:eq. Crea

A_ack- B ack- C_ack-
durnmy_ext
ranond+
A,
. B ﬂ ackCond+
A I
’v
Con mO Cory Emi
A q+ B rcq+
A ack+ wqCond+ B ﬂCk"'
A_reg- B_reg

V ackCondy) !
A_ack- B._ack-
N
CondExt\‘?’ﬁojd Kt
Fig. 2. STGs of CDFG primitive nodes.

erties. Fig.2 shows the STGs corresponding to each prim-
ittve node.

IV. PARTITIONING ALGORITHM

The structure of our hierarchical CDFG can provide
STGs that can be synthesized by Petrify. Conditions un-
der which circuits can be synthesized by Petrify are not
specifically identified because they are strongly influenced
by the given 8TGs. Therefore, in most cases, the number
of input and output signals in the STG is used as a basis to
verify whether the generated circuits can be synthesized.
The largest number of signals allowed is represented by n,
which is regarded as the sufficient condition.

To provide an STG with signals limited to n, the given
CDFG and its tree structure must be partitioned. Then
we add handshake signals between the partitioned con-
trollers. The number of signals in each partitioned con-
troller must not exceed n. These additional handshake
signals are an overhead. However, since less CSC con-
flicts left in each STQ, the result partitioned circuits often
smaller than the centralized one.

Our algorithm is described below.

Algorithm process

1. A sub-tree that does not include control nodes is re-
ferred to a DFG, and a group of nodes in a DFG is
removed from the list of candidates for partitioning.

ITC-CSCC 2002

2. Control nodes (“choice” and “loop” nodes) are sep-
arated from the other nodes. A group of separated
control nodes is S’.

3. The following process is applied to each CDFG of the
separated control nodes in S according to the results
of the breadth-first search: :

(a) If a node to be merged exceeds n, partitioning

of this node is performed.
(b) If “total + 2 < n”, the two nodes are merged.
(c) If not, the node is partitioned and the resulting

sub-tree is added to S’.

First, nodes that include a conditional operation are
referred to control nodes, while all the other nodes are
referred to Data Flow Graph (DFG) nodes. The DFG
node group obtained after the execution of a conditional
signal could generate STGs capable of synthesizing.

Next, partitioning related to conditional behavior is per-
formed. The STGs generated from “choice” and “loop”
nodes, which contain conditional behavior, tend to be ex-
tremely complicated; therefore, only one conditional node
should be allowed in each partitioned CDFG.

The “seq” nodes that appear inside “choice” nodes may
cause complicated CSC conflicts. Therefore, partitioning
of “choice” nodes is performed on the “seq” node level.
In the other word, the “choice” node to be partitioned
is allowed to include only one level of a “seq” node. As
shown in Fig.4(a}, node D3 is not merged into the upper
“seq” node. This restriction results in less complicated
CSC conflicts than merging D3 into the upper “seq” node
as shown in Fig.4(b).

In addition, when the hierarchical CDFG is used to
represent a certain circuit that has been represented by
a CDFG, several DFGs of the same function could ap-
pear in the hierarchical CDFG. In such a case, only one
of them is used to synthesize a control circuit. For ex-
ample, node D1 in Fig.1 is shared by the seq and choice
nodes. The overall control circuits generate circuits that
meet the specifications of the hierarchical CDFG by acti-
vating the synthesized circuits using handshake pairs from
several parent CDFGs.

Finally, when a given single node (“seq”, “par”,
“choice”) is more complicated than the S’ set obtained
by partitioning the control nodes, the node will be par-
titioned rather than being merged into the nodes in §’.
After that, connections among nodes are searched out.
Then the primitive nodes continue to be merged inside
the CDFG until the largest number of signals allowed
is reached. The result is a sub-graph that can be syn-
thesized. This algorithm performs a breadth-first search
against the given tree structure. The searched-out nodes
are checked for the number of signals. Then the number
of signals after merging is calculated on the premise that
these nodes are merged with additional ones. If the cal-
culated number exceeds the largest number of signals al-
lowed (n), merging will not be performed but the node will
be partitioned. By repeating the same procedure on the

partitioned sub-trees, a hierarchical CDFG with signals
within the largest number of signals allowed is generated.

V. GLUE LogGIcs

As a result of partitioning, one data path block or a con-
troller could sometimes receive request signals from more
than one controller. Therefore, to control or arbitrate sig-
nals, we need a special kind of circuits called “glue logics”.

Glue logics are likely to increase the controller area.
However, since a data path block is often much larger than
its controller, using glue logics could reduce the redundant
data path blocks.

Controller 1 [Controller2 l l Controller 1] L(Zontrollerz

eq ack reql | req2 ack
Functional unit Multiplexer
or register p
(a) (b)

Fig. 3. Glue logics

As hypothesized in this paper, the given CDFGs are all
scheduled. Therefore, partitioned controllers never trans-
mit request signals to modules simultaneously, and the
glue logic to be inserted can easily be determined.

For example, Fig.3(a) illustrates the circuits in which
one controller receives request signals from two controllers.
In this circuit, when a request signal is generated from one
of controllers, the C-elements are used to determine for
which controller should be returned the acknowledgment
signal. The other glue logic is shown in Fig.3(b). When an
operation that involves a multiplexer is being performed,
the request signals directly come from each controller, and
the acknowledgment signal is returned to the controller
requesting to use the multipiexer.

V1. EXPERIMENTAL RESULT

As an example, we make an experiment on processor
Siml described previously. An evaluation was conducted
based on the following three results of partitioning:

1. Partitioning using the proposed algorithm —

Fig.4(a).

2. Partitioning to obtain the finest grain (fine-grain par-
titioning) — Fig.1(b).

3. Partitioning to minimize the number of nodes (coarse-
grain partitioning) — Fig.4(b).

ITC-CSCC 2002

(a) (b

Fig. 4. CDFG nodes of processor Sim1 partitioning: proposed
partitioning (a), coarse grain partitioning (b).

. TABLE I
SYNTHESIS RESULTS OF PROCESSOR SiM1.

processor Siml suggested fine coarse
(i of CDFGs) 8 13 6
non-tm CDFG area 2224 2376 2603
ratio 1.00 1.04 1.06
CB-C10 CDFG area 631 662 -
ratio 1.00 1.03 -
Petrify CDFG area 3832 4088 -
ratio 1.00 1.04 -

The number of the signals is limited to 22 (n=22).

Table I shows the results of synthesizing these CDFGs.
Technology-mapping of the coarse-grain partitioning was
unable to be mapped to CB-C10 [9] and Petrify libraries,
so no results for coarse-grain partitioning are shown.

From these results, we can observe that the proposed al-
gorithm provides 4% decrease in circuit size compared to
the fine-grain partitioning. This indicates that partition-
ing CDFGs into too small nodes causes the area overhead
on handshake signals for communicating the partitioned
nodes.

The proposed algorithm also provides 6% better area
than the coarse-grain partitioning. This indicates that re-
striction on partitioning a series of “seq” nodes can reduce
the number of state explosion, resulting in fewer CSC sig-
nal insertions during synthesis. Therefore, considering the
synthesis efficiency of each partitioned CDFG node, fine-
grain partitioning of nodes is considered more desirable.

The above two evaluations are obviously contradictory,
and a trade-off in the granularity of partitioning is sus-
pected. The results of this experiment suggest that, with
respect to generated circuit size, the proposed algorithm is
more capable of achieving optimum granularity compared
to fine-grain and coarse-grain partitioning,.

Vil. CoNCLUSIONS

We have proposed a hierarchical CDFG and an al-
gorithm for partitioning asynchronous controllers. The
structure of our hierarchical CDFG allows flexible par-
titioning regardless of data path structures. The given

CDFG was partitioned according to the largest number of
signals allowed so that circuits could be synthesized from
the partitioned CDFGs. The evaluation of the algorithm
indicated its capability to generate asynchronous circuits
efficiently.

ACKNOWLEDGMENTS

This work was supported in part by Information-
technology Promotion Agency (IPA) Japan. We would
like to thank Prof. Hiroshi Nakamura for his helpful com-
ments on this work.

REFERENCES

[1] Jordi Cortadella, Rosa Badia, Enric Pastor, and
Abelardo Pardo, “Achilles: A High-Level Synthesis
System for Asynchronous Circuits”, 6th International
Workshop on High-Level Synthesis, pp. 87-94, 1992.

2

Euiseok Kim, Jeong-Gun Lee and Dong-1k Lee, “Au-
tomatic Process-Oriented Control Circuit Genera-
tion for Asynchronous High-Level Synthesis”, in Pro-
ceedings of Sizth International Symposium on Ad-
vanced Research in Asynchronous Circuits and Sys-
tems(ASYNC2000), pp. 104-113, April 2-6, 2000.

[3] Michael Theobald and Steven M. Nowick, “Transfor-
mations for the Synthesis and Optimization of Asyn-
chronous Distributed Control”, in Proceedings of 38th
Design Automation Conference (DAC) pp. 263-268,
June 18-22, 2001.

{4] Prabhaker Kudva, Ganesh Gopalakrishnan, and
Hans Jacobson, “A Technique for Synthesizing Dis-
tributed Burst-mode Circuits”, In proceedings of 33rd
Design Automation Conference, 1996.

[5] Giovanni De Micheli, Synthesis and Optimization of
Digital Circuits, McGraw-Hill, 1994.

[6] Tam-Anh Chu, “Synthesis of Self-timed VLSI Cir-
cuits from Graph-theoretic Specifications”, Ph.D
Thesis, Massachusetts Institute of Technology, June,
1987.

[7] Al Davis and Steven M. Nowick, “An Introduction
to Asynchronous Circuit Design”, The Encyclopedia
of Computer Science and Technology, Vol. 38, Marcel
Dekker, New York, February 1998.

(8] Jordi Cortadella, Michael Kishinevsky, Alex Kon-
dratyev, Luciano Lavagno, and Alexandre Yakoviev,
“Petrify: a tool for manipulating concurrent speci-
fications and synthesis of asynchronous controllers”,
XI Conference on Design of Integrated Circuits and
Systems, November 1996.

[9] NEC Corporation, “CB-C10 Family 0.25-uym CMOS
Cell-Based IC (2.5V) Library”, July 1997.

ITC-CSCC 2002

