A Resource-constrained Scheduling Algorithm for High-level Synthesis

Ho-Jeong Song, Jae-Jin Lee, In-Jac Hwang*, Gi-Yong Song

Dept. of Computer Engineering Dept. of Computer Education*

Chungbuk National University, Cheongju Chungbuk 361-763 Korea

Tel : +82-43-261-2452

Fax : +82-43-262-2449

E-mail : gysong@chungbuk.ac.kr

Abstract :
control/data flow graph(CDFG) to a specific control step. It

Scheduling is assigning each operation in a

directly influences the performance of the hardware synthesized.
In this paper, we propose an efficient resource-constrained
scheduling algorithm assuming that only available silicon area is
given. We performed the experiment to evaluate its performance.
The results show that our algorithm find the solution with shorter

scheduling length compared to the existing methods.

1. Introduction

Scheduling for digital system synthesis is assigning each
operation in a control/data flow graph(CDFG) to a specific
control step without violating precedence relation. It is one
of the most important tasks due to its direct influence on the
performance of the hardware synthesized. In general,

scheduling problems can be grouped into two classes; time-

constrained scheduling and resource-constrained scheduling.

In time-constrained scheduling, a fixed control step length
is given, and the objective is minimizing the cost of
hardware by minimizing the number of functional units of
each operation. Time-constrained scheduling is important
for designs of real time systems where sampled data arrive
continuously at a fixed rate.

As opposed to time-constrained scheduling, resource-
constrained scheduling is required when the limitation is
imposed on the silicon area. The goal here is producing a
design with the best possible performance while meeting
the given area constraint. Scheduling an operation can be
delayed by the limited amount of resources, even if all the
preceding operations are already scheduled. There are many

resource-constrained scheduling algorithms existing in the

literature. Most of them assumed that the constraint is given
in terms of the number of functional units of each type[2].
However, what is given in the real design problem is the
available silicon area, and from which it is very difficult to
determine the number functional units of each type that can
accommodate the shortest scheduling length.

In this paper, we propose an efficient resource-
constrained scheduling algorithm assuming that only
available silicon area is given. Our algorithm first analyzes
the given CDFG to determine the number of functional
units of each type, then assigns each operation to a control
step while satisfying the constraints. It also tries to improve
the solution iteratively by adjusting the number of
functional units using the results collected from the

previous scheduling.

2. Proposed approach

In the approach we propose, we determine the number of
functional units of each type using simple scheduling
algorithms such as ASAP and ALAP scheduling[1]. ASAP
scheduling algorithm assigns a value e, to each node v; of a
CDFG. ¢, represents the earliest possible control step that v,
can be scheduled with the given precedence constraints.
The control step length E obtained by ASAP scheduling is
the shortest possible scheduling length provided that
unlimited number of functional units are available.

After ASAP scheduling, we apply ALAP scheduling to
the given CDFG with the control step length E to obtain /;
value for each node v, I, represents the latest possible
control step that v; can be scheduled without exceeding the
scheduling length E. Hence, the values e; and /; provide the

ITC-CSCC 2002

range of control steps for the operation represented by the
node v;. Figure 1. show the results of applying ASAP and
ALAP scheduling to a given simple CDFG.

Figure 1. ASAP & ALAP scheduling

A functional unit should be available between the control
step e; and /; so that v; can be scheduled in that range. If
many operations of the same type have the same range, we
need many functional units of that type to perform those
operations. In our proposed approach, we use the above
information to determine the initial number of functional

units of each type. For each operation type f,, we compute

p! as follows.

pl =Z___I__ where v; is of type ¢, and e; g <,
e l—e+1

p/' is the estimated number of functional units of type #
k

at control step j. We take the maximum of p{; to obtain

the number of functional units of type f. That is,

p,, =max, p, - The P, values are used as the proportional

distribution of the number of functional units of each type.

The actual number of functional units n, s obtained

using the above distribution, available silicon area, and the

silicon area required for implementing each functional unit.

Since p, is an integer value, it is possible that a portion of
k

silicon area is not used because it is too small for any

functional unit. We trace the unused area in the remaining

procedure to maximize the utilization of silicon area.

After obtaining n, Vvalues, we use list scheduling to

assign each operation to a control step. In the list scheduling,
we try to identify the operation type, such that increasing
the number of functional units of that type may shorten the
scheduling length. This is done by counting the number of
operations of each type that cannot be scheduled due to the
lack of functional units. We increase the number of
functional units of that type by decreasing the numbers of
functional units of other types. Then we apply the list
scheduling again with the updated number of functional
units. We repeatedly apply the same procedure until no
more improvement is possible. In the following section, we

present the proposed approach in detail.
3. A scheduling algorithm

We use the following notations in description of the

proposed scheduling algorithm.

G : Given Control/Data Flow Graph
0; : Operation represented by node v;in G
A : Total silicon area

1 : Functional unit type

a Required silicon area to implement functional unit of
k

type e

p; : Estimated number of functional units of type # at

control step j.

n,: Number of functional units of type #,

R : Remaining silicon area

Cyeep - Control step length

The following procedure compute a, values using the

method explained the in the previous section.

ITC-CSCC 2002

repeat

Procedure COMPUTE_FUNC_UNITS (G, 4,4) _
= % INSERT_READY_OPS(G, Plist;, Plists, ..., plist,)

Call ASAP (G) Coep=0
Call ALAP (G) while ((Plist;/=@) or (Plist =) or Plist, = @)) do
for each o; do ’ Citep = Cyrept1

for each j, e; §</;do for k=1 to m do

P (type of 0) = P’ (type of o) + 1/ (Irer+1) for funi=I to n, do

endfor

if Plist' =@ then
endfor '

for each ; do SCHEDULE_OP(Scurrent,FIRST(pyjst,), Corep)

p, =maxF/ Plist, =DELETE(pyjsy , FIRST(pyiss,))
endfor endif
for each # do endfor

_ B, at, A —
q" B Zpr.an. . ROP'A» B ROP’k +
N o endfor
“a, INSERT READY_OPS(G, Plist,, Plist,, ..., Plist,)
endfor endwhile
R=4-) N.a, R_oP_ =Min(R_oOP,)
A = % x

end COMPUTE 'FUNC_UNITS

After obtaining n, values, the following procedure is REALLOCATE(R, bnirs tner)

Sprev = Scurvent
called to assign each operation to a control step. It is until (Cy, Prev_S_length)
essentially a list scheduling, but we count the number of §=8,ev
operations of each type that cannot be scheduled due to the End SCHEDULING
lack of functional units in each iteration. These numbers are
used in the procedure REALLOCATE to adjust the number Procedure REALLOCATE(R, £, byax)

of functional units to obtain the better scheduling. The ifR2R>q, then
procedure INSERT_READY_OPS scans the set of nodes in R=R-R2a,
G to determine if any of the operations are ready. It deletes else
each ready node from the set and appends it to one of the temp=gq, —R
priority lists based on its operation type. Procedure R=0
SCHEDULE_OP schedule the given operation at the given repeat
control step. Procedure DELETE deletes the given temp =temp - g
operation from the specified list. n =m -1
untii (temp <0)
n, =mn_ *+ 1

Procedure SCHEDULING (G, #,)
' end REALLOCATE

Prev_S_length = oo

ITC-CSCC 2002

4. Performance evaluation

We performed the experiment to evaluate the
performance of our scheduling algorithm. The proposed
scheduling algorithm was applied to the CDFG of fifth-
order wave digital elliptic filter[3). This example contains
26 additions and 8 multiplications. The scheduling length
obtained by ASAP scheduling was 33, which is the shortest
possible length with unlimited number of functional units.
We assumed that a multiplication unit takes the twice as
much silicon area as an addition unit. We calculated the
equal number of multiplication and addition units that can
be accommodated in a given silicon area. We applied the
list scheduling algorithm with the above functional unit
numbers and obtained the scheduling length 38. We also
applied our scheduling algorithm to the same example and

obtained the shorter scheduling length 35.

Table 1. Performance analysis of the digital elliptic filter

for the case A= 8

. num of | numof | Schedule
Algorithm
+ * length
2 2 38
List Schedule
2 3 38
Our Schedule 4 2 35

5. Conclusions

In this paper, we propose an efficient resource-constrained
scheduling algorithm assuming that only available silicon area is
given. The algorithm utilizes the distributions of different
operations in the control/data flow graph to determine the number

of functional units. The operations are scheduled using well-

known scheduling algorithm, and the result is iteratively improved.

We performed the experiment to evaluate its performance. The
results show that our algorithm find the solution with shorter

scheduling length compared to the existing methods.

References

{1] Daniel D.Gajski, Nikil D.Dutt, High-Level Synthesis
Introduction to Chip and System Design, Kluwer Academic
Publishers

[2] C.T. Hwang and Y.C. Hsu, "Zone Scheduling", /EEE
Transactions on Computer-Aided Design of Integrated
Circuites and Systems, vol.12, no.7, pp.926-934, July 1993.
(31 S.Y. Kung, H.J. Whitehouse, and T. Kailath, "VLSI and
Modern Signal Processing”, Englewood Cliffs, NJ: Prentice
Hall, pp.258-264, 1985.

ITC-CSCC 2002

