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Abstract: This paper presents a technique for avoid-
ing indefiniteness in Maximum Likelihood (ML) criteria
for Direction-of-Arrival (DOA) finding using a sensor ar-
ray with arbitrary configuration. The ML criterion has
singular points in the solution space where the criterion
becomes indefinite. Solutions by iterative techniques for
ML bearing estimation may oscillate because of numer-
ical instability which occurs due to the indefiniteness,
when bearings more than one approach to the identical
value. The oscillation makes the condition for terminat-
ing iterations complex. This paper proposes a technigue
for avoiding the indefiniteness in ML criteria.

1. Introduction

The localization of multiple signal sources by a pas-
sive sensor array is of great importance in the areas of
radar, sonar, seismology, radio-astronomy, etc. The ba-
sic problem in this context is to estimate bearings of
narrow-band signal sources located in the far field of the
array. To achieve high resolution under small data sam-
ple, low SNR conditions and/or coherent environments,
several techniques has been introduced, such as Maxi-
mum Likelihood (ML) method and MUSIC method.

The ML technique, known to have excellent estima-
tion accuracy, is superior to other methods concerned
with the resolution. However the criterion has singu-
lar points in the solution space where the criterion be-
comes indefinite. Solutions by iterative techniques for
ML bearing estimation may oscillate because of numer-
ical instability which occurs due to the indefiniteness,
when bearings more than one approach to the identical
value. The oscillation makes the condition for terminat-
ing iterations complex.

This paper proposes a technique for avoiding the in-
definiteness in ML criteria for an arbitrary array config-
uration.

2. ML Criterion

Under the assumption of additive Gaussian noises, an
ML function for bearing estimation is described as a sum

of norms of vectors which are projections of observed
vectors onto the signal subspace [1]. The signal subspace
is the subspace spanned by steering vectors associated
with bearing to be estimated.

We consider a sensor array with arbitrary configura-
tion. Supposed that arbitrary ¢ different bearings have
independent steering vectors. It is required to ensure
the unique solution of bearing estimation. Let a(6, ¢)
be a steering vector toward the direction (6, ¢), where 6
and ¢ represent the azimuth and the elevation, respec-
tively. If ¢ steering vectors are lineally independent, the
signal subspace has the ¢ dimension. If two of them,
say (01, ¢1) and (02, ¢2), have the same bearing and all
others are different each other, it is apparent that the
signal subspace has ¢ — 1 dimension.

On the other hand, taking the limit 6
and ¢; — ¢, the difference of the steering vectors
a(f2,42) — a(f1,¢1) belongs to the signal subspace.
Hence a derivative an (62, ¢2) determined as follows be-
longs to the limit of the signal subspace.

a(f2,$2) — a(f1,41)

- 02

aq(02,¢2) = Al'iyEO Ay
_ da(8,¢) . 0Ba(6,¢)
= cosa—p +sina 59 1

where 0 — 81 = cosaAy and @2 — ¢; = cos aA~y. Usu-
ally, the derivative a,(6z, ;) is linear independent of
the steering vector a(f2,¢2) and all other steering vec-
tors. This indicates that the signal subspace has ¢ di-
mension and the value of the ML function varies to-
gether with the signal subspace depending on « when
the limit is taken. In other words, the ML criterion is
indefinite at the point where more than one bearings are
identical. Such points in the solution space are singular
points of an ML function and numerically unstable for
evaluating an ML function. It is hard to apply the gra-
dient method when more than one bearings approach to
the same bearing.

If all derivatives of steering vectors which appear
when the limit is taken are ignored, the ML criterion can
be determined uniquely. But it is always less than that
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of the case derivatives are taken into account. This in-
dicates that (61, 1) = (62, ¢2) is never a solution even if
(61, $1) climbing the ML function approaches to (62, ¢2).
In this case (6, ¢;) wander around (62, #2). Therefore
ignoring all derivatives is not a solution for avoiding the
indefiniteness of the ML function.

In the case of a uniform linear array, the singular
point is avoidable and the formulation for avoiding the
singular point has been proposed [2].

3. Proposed Technique

In order to avoid the indefiniteness of the ML func-
tion, we take the approach to replace steering vectors
with their derivatives if they are linearly dependent.

Define the following differential operator,

D(a) = cos a-a—a-e- + sin "‘ais (2)

and notations
D(c)a(8, $) = aq(9, ) (3)
D(e)D(B)a(8, ¢) = aas(6,¢) (4)

The limit of the signal subspace spanned by several
steering vectors approaching to one bearing (6, ¢) con-
tains the following vectors. The left column represents
parameters to be optimized for obtaining the maximum
of the likelihood function.

2 steering vectors:

(al) a’(e’ ¢) Qo (9’ ¢) (5)

3 steering vectors:
(al) a’(ea ¢) Aoy (0, ¢) Aoy oy (01 ¢) (6)
0 a(6,¢) o (6,4) an(0,8) (7)

4 steering vectors:

(1) a(0,9) @0,(0,8) Gaya,(0,9) Gayenas (6, 9)

@)
((11) 0(0, ¢) Qay (0’ ¢) Oy (0’ ¢) Caya; (01 ¢)
(9)
(011, 02) a(e’ ¢) Qo (9’ ¢) Qo (Ga 4’) Qo oy (9’ d’)
(10)

Since the 1st order of derivative is belongs to a
2 dimensional subspace spanned by da(d, ¢)/06 and
0a(8,¢)/0¢, no optimization is needed for Eq. (7).

4. Examples
4.1 Criterion

In Fig. 1, an example of the ML function is shown,
when all derivatives are ignored. The scenario is shown
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(a) 3D display of the ML function.
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(b) Contour lines of the ML function on (8;, ¢1) plane.

Figure 1. An example of an ML function ignoring all
derivatives. 8 identical and omnidirectional sensors
are located at corners of a cubic with edges of a
half of wavelength on the horizontal plane. Two
signals impinge on the sensor array from directions
(30°, 40°) and (40°, 60°), respectively. Both SNR’s
are 0dB. The ML function is evaluated with one
fixed bearing (03, ¢2) = (45°, 49°) and one variable
bearing (61, ¢1). The ML function has a singular
point at (61, ¢1) = (45°,49°).

in the figure caption. It can be found that the value of
the ML function at (6, ¢;)-= (62, ¢2) = (45°, 49°) is
smaller than other points around it.

In Fig. 2, the graph of the maximum likelihood func-
tion is shown, when optimal derivatives are used. It can
be found that the value of the ML function at (61, ¢,) =
(82, ¢2) = (45°, 49°) keeps continuity for the maximum
value around it.

4.2 DOA finding

Using iterative techniques of the ML bearing estima-
tion, the solution may show the behavior of oscillations
due to the existence of singular points in the solution
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(a) 3D display of the ML criterion.
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(b) Contour lines of the ML criterion on (61, ¢1) plane.

Figure 2. An example of an ML function taking deriva-
tives into consideration. The scenario is the same
as Fig. 1.

space. Figs 3 and 4 show examples of the ML bearing
estimation. The scenario is shown in the caption of Fig.
3.

In all simulations, Alternating Projecting (AP) algo-
rithm [1] is applied. In the update phase of the AP
algorithm, first two dimensional search on a mesh of the
area 0 < 6 < 360°, —90° < ¢ < 90° is carried out,
and then a fine search on a two dimensional mesh of a
restricted area is carried out.

Oscillation of solution is seen in AP algorithm as
shown in Fig. 3 (a). The oscillation can be suppressed
as shown in Fig. 3 (b) by keeping the bearing obtained
in the previous update phase when the bearing giving a
greater value of the ML function could not be found in
the current update phase. Although in this case the ML
criterion is monotonically increasing as shown in Fig.
4, it approaches to less value than the ML criterion of
Fig. 3 (a). This may be happen because one bearing
is blocked to approach to another bearing due to the
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(a) Normal AP algorithm (AP).
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(b) AP algorithm restricted so that the ML cri-
terion never decreases in update phase (AP

monotonic).
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(c) AP algorithm applying the proposed technique
and also restricted so that the ML criterion -.
never decreases in update phase (APM mono-
tonic).

Figure 3. Examples of bearing estimations. The array
configuration of sensors is the same as in Fig. 1.
Independent signals are impinging from two direc-
tions (32°,0°) and (35°,5°) with SNR's 5 dB for
both. Using 200 snapshots, bearings are estimated
by the alternating projecting (AP) algorithm. Ex-
planations for difference in (a), (b) and (c) are de-
scribed above.
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Figure 4. Examples of bearing estimations. The scenario
is the same as Fig. 3. The labels in the figure
correspond to the simulations in Fig. 3.

singularity of duplicated bearings.

The use of the technique of avoiding singular points,
not only the oscillation is suppressed as well as Fig. 3
{(b), but also less iterations are required than Fig. 3
(b). Furthermore the ML criterion approaches to the
greater value than both Fig. 3 (a) and (b), since the
proposed technique does not prevent one bearing from
approaching to another bearing.

5. Conclusions

This paper has presented a technique for avoiding in-
definiteness in Maximum Likelihood (ML) criteria for
Direction-of-Arrival (DOA) finding using a sensor ar-
ray with arbitrary configuration. Simulation results has
been shown to demonstrate the validity of the proposed
technique. The application of the proposed technique
to the bearing estimation has been shown. The nu-
merical instability in neighborhood of singular points is
still remained, since this paper has shows the technique
avoiding only singular points. The numerical instability
may cause undesired behavior of convergence in itera-
tive techniques of DOA finding. Further investigation is
required.
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