Time Service Guranteeing in Real-Time Distributed Simulation
Object Oriented Programming

Hee-Chul Kim', Gwang-Jun Kim? Moon-Hwan Kim®, Sang-Dong Ra*, and Chul-Soo Bae’
12343¢hool of Computer Engineering, Chosun University, Kwangju, Korea
Tel: +82-062-230-7757, Fax: +82-062-230-7381
5 Dept. of Information & Communication Engineering, Kwandong University, Kangwon, Korea
Tel: +82-033-670-3411, Fax: +82-033-671-2118
e-mail : kimhc@teleoffice.co.kr, ban9628@hotmail.com, kmh@ktf.com,
sdna@mail.chosun.ac kr, baecs@mail kwandong.ac kr

Abstract: The object-oriented(OO) distributed real-
time(RT) programming movement started in 1990's and is
growing rapidly at this turn of the century. Distributed real-
time simulation is a field in its infancy but it is bounded to
receive steadily growing recognition for its importance and
wide applicability. The scheme is called the distributed
time-triggered simulation scheme which is conceptually
simple and easy to use but widely applicable. A new
generation object oriented(OO) RT programming scheme is
called the time-triggered message triggered object(TMO)
programming scheme and it is used to make specific
illustrations of the issues. The TMO structuring scheme is a
general-style components structuring scheme and supports
design of all types of component including hard real time
objects and non real time objects within one general

structure.

1. Introduction

Object oriented real time distributed computing is a rapidly
growing branch of computer science and engineering. Its
growth is fueled by the strong needs present in industry for
the RT programming methods and tools which will bring
about orders of magnitude improvement over the traditional
RT programming practiced with low-level programming
languages and styles.

RT simulator developments are under increasing
demands[1,2,3,4]. For example, continuing advances in
virtual reality application accompany increasing demands
for more powerful RT simulation capabilities. Numerous
other examples can also be found in the RT computing
control field. Not only description but also simulation of
application environments is often performed as integral
steps of validating control computer system designs. RT
simulators of application environments can often enable
highly cost-effective testing of the control computer
systems implemented. Such testing can be a lot cheaper
than the testing performed in actual application
environments while being much more effective than the
testing based on non-RT simulators of environments.

The new generation OO RT programming scheme called
the time-triggered message triggered object programming
scheme[3,5,6]. In the course of developing a RT system
engineering methodology based on this TMO programming
scheme, a new approach to RT simulation which is
conceptually simple and easy to use but widely applicable,
has also been established.

In the next section, the motivations for pursuing the OO
RT programming approach are reviewed and then in section

3, a brief overview is taken of the particular programming
scheme. This programming scheme called the time-
triggered message triggered object(TMO) programming
scheme [3,6] is used on several occasions in the rest of this
paper to make specific illustrations of the issues and
potentials of OO RT programming..

2. An Overview of the TMO structure
In distributed RT simulation, simulator objects are

distributed among multiple nodes. Synchronization of the
simulation steps of distributed simulator objects in then a
key challenge. In other words, a simulation step executed
by every member of the distributed simulator object group
must be synchronized with the corresponding simulation
step executed by any other member. In other word, the
simulator clock for one simulator object must commence
the n-th tick neither before the (n-1)th tick by the clock for
another simulator object nor after the (n+1)-th tick by the
clock for another simulator object.

Therefore, every member must perform some activities
necessary to stay synchronized with other members. For
example, distributed nodes may exchange completion
reports at the end of each simulation-step. However, this is
not an efficient approach when the number of nodes used is
large. The essence of the distributed time-triggered
simulation approach is the following:

(1) Every node is equipped with an RT clock and executes
each simulation step upon reaching of the RT clock at the
predetermined value; and

(2) Every simulation step is designed to be completed
within on ticking interval.

The distributed time triggered simulation approach has
major advantages over other distributed simulation
approaches, even if we assume that the latter approaches
can be adapted somehow to enable RT simulation..

As a concrete example of a high-level OO RT distributed
programming approach that has been based on the
philosophy discussed in the preceding section, the time-
triggered message-triggered object (TMO) programming
scheme is briefly sumtnarized in this section{2,3,4,5,6].

The TMO scheme was established in early 1990's with a
concrete syntactic structure and execution semantics for
economical reliable design and implementation of RT
systems. The TMO scheme is a general-style component
structuring scheme and supports design of all types of
components including distributable objects and
distributable non-RT objects within one general structure.

Calling the TMO scheme a high-level distributed

ITC-CSCC 2002

programming scheme is justified by the following
characteristics of the scheme :

(1) No manipulation of processes and threads:Concurrency
is specified in an abstract form at the level of object
methods. Since processes and threads are transparent to
TMO programmers, the priorities assigned to them, if
any, are not visible, either.

(2) No manipulation of hardware-dependent features in
programming interactions among objects T™O
programmers are not burdened with any direct use of
low-level network protocols and any direct manipulation
of physical channels and physical node addresses/names.

(3) No specification of timing requirements in (indirect)
terms other than start-windows and completion deadlines
for program units (e.g., object methods) and time-
windows for output actions : TMOs are devised to
contain only high-level intuitive and yet precise
expressions of timing requirements. Priorities are
attributes often attached by the OS to low-level program
abstractions such as threads and they are not natural
expressions of timing requirements. Therefore, no such
indirect and inaccurate styles of expressing timing
requirements are associated with objects and methods.

At the same time the TMO scheme is aimed for enabling a
great reduction of the designer's efforts in guaranteeing
timely service capabilities of distributed computing
application systems. It has been formulated from the
beginning with the objective of enabling design-time
guaranteeing of timely actions. The TMO incorporates
several rules for execution of its components that make the
analysis of the worst-case time behavior of TMOs to be
systematic and relatively easy while not reducing the
programming power in any way. TMO is a natural and
syntactically minor but semantically powerful extension of
the conventional object(s)[6].

As depicted in Fig. 1 the basic TMO structure consists of
four parts : .

ODS-sec = object-data-store section : list of object-data-
store segments(ODSS's);

EAC-sec = environment access-capability section : list of
gate objects (to be discussed later) providing efficient call-
paths to remote object methods, logical communication
channels, and I/O device interfaces;

SpM-sec = spontaneous-method section
spontaneous methods;

SvM-sec = service-method section.

list of

The TMO model is a syntactically minor and semantically
powerful extension of the conventional object model.
Significant extensions are summarized below and the
second and third are the most unique extensions.
(a) Distributed computing component
The TMO is a distributed computing component and thus
TMO's distributed over multiple modes may interact via
remote method calls. To maximize the concurrency in

execution of client methods in one node and server
methods in the same node or different nodes, client
methods are allowed to make non-blocking types of
service requests to server methods

Figure 1. Structure of the TMO

(b) Clear separation between two types of methods
The TMO may contain two types of methods, time-
triggered(TT-) methods (also called the spontaneous
methods or SpM*‘s) which are clearly separated form the
conventional service methods(SvM’s). The SpM
executions are triggered upon reaching of the RT clock at
specific values determined at the design time whereas the
SvM executions are triggered by service request
messages from clients. Moreover, actions to be taken at
real times which can be determined at the design time
can appear only in SpM's.
(c) Basic concurrency constraint(BCC)
This rule prevents potential conflicts between SpM's and
SvM's and reduces the designers efforts in guaranteeing
timely service capabiliies of TMO's. Basically,
activation of an SvM triggered by a message form an
external client is allowed only when potentially
conflicting SpM executions are not in place. An SvM is
allowed to execute only if no SpM that accesses the same
object data store segments(ODSS's) to be accessed by
this SvM has an execution time-window that will overlap
with the execution time-window of this SvM.
(d) Guaranteed completion time and deadline
As in other RT object models, the TMO incorporates
deadlines and it does so in the most general form.
Basically, for output actions and completion of a method
of a TMO, the designer guarantees and advertises
execution time-window bounded by start times and
completion times. Triggering times for SpM's must be
fully specified as constants during the design time.
Those RT constants appears in the first clause of an
SpM specification called the autonomous activation
condition(AAC) section

A provision is also made for making the AAC section of
an SpM contain only candidate triggering times, not actual
triggering times, so that a subset of the candidate triggering

ITC-CSCC 2002

times indicated in the AAC section may be dynamically
chosen for actual triggering. Such a dynamic selection
occurs when an SVM or SpM within the same TMO
requests future executions of a specific SpM. TMO's
interact via calls by client objects for service methods in
server objects. The caller maybe an SpM or an SvM in the
client object. The designer of each TMO provides a
guarantee of timely service capabilities of the object.
He/she does so by indicating the guaranteed execution
time-window for every output produced by each SvM as
well as by each SpM executed on requests from the SvM
and the guaranteed completion time for the SvM in the
specification of the SvM. Such specification of each SvM is
advertised to the designers of potential clients objects.
Before determining the time-window specification, the
server object designer must convince himself/herself that
with the object execution engine (hardware plus operating
system) available, the server object can be implemented to
always execute the SvM such that the output action is
performed within the time-window. The BCC contributes to
major reduction of these burdens imposed on the designer.
Models and prototype implementations of the effective
operating system(OS) support and the friendly application
programmer interface(API) have been developed.

The TMO model is effective not only in the multiple-level
abstraction of RT (computer) control systems under design
but also in the accurate representation and simulation of the
application environments. In fact, it enables uniform
structuring of control computer systems and application
environment simulators and this presents considerable
potential benefits to the system engineers.

3. ' Deadline specification and service time
guarantee

As mentioned in the overview of the TMO scheme, the
designer of each RT object can provide a guarantee of the
timely service capabilities of the object by indicating the
execution time-window for every output produced by each
service method in the specification of the service method
advertised to the designers of potential client objects.
Actually the execution time-window associated with every
output form every TT method is also a part of the guarantee.
An output action of a service method ma be one of the
following

(1) An updating of a portion of the ODS;

(2) Sending a message to either another RT object (which
may or may not be the client) or a device shared by
multiple objects;

(3) Placing a reservation into the reservation queue for a
certain TT method that will in turn take its own output
actions.

The specification of each service method which is

provided to the designers of potential client RT objects,

must contain at least the following:

(1) An input specification that consists of

(1a) the types of input parameters that the server
object can accept and

(1b) the maximum request acceptance rate, i.e., the
maximum rate at which the server object can receive

service requests form client objects;

(2) An output specification that indicates the maximum
delay (not the exact output time) and the nature of
the output value for every output produced by the
service method.

If service requests form client object arrive at a server
object at a rate exceeding the maximum acceptance rate
indicated in the input specification for the server object,
then the server may return exception signals to the client
objects. The system designer who checks an
interconnection of RT objects can prevent such “overflow”
occurrences through a careful analysis. The designer should
ensure that the aggregate arrival rate of service request at
each server object does not exceed the maximum
acceptance rate during any period of system operation. In
order to satisfy greater service demands presented by the
client objects, the system designer can increase the number
of server objects or use more powerful execution engines in
running server objects. Before determining the maximum
delay specification, the server object designer must
consider the following.

(1) The worst-case delay form the arrival of a service
request form a client object to the initiation of the
corresponding service method by the server object;

(2) The worst-case execution time for the service method
from its initiation to each of its output actions.

On the other hand, a client RT object imposes a deadline
on the cooperating distributed object execution engines for
producing the intended computational effects including the
execution of the called service method and the arrival of the
return results at the client object If this deadline is violated,
the execution engine for the client object invokes an
appropriate exception handling function.

The specifications of the TT methods which may be
executed on requests from the service method must also be
provided to the designers of the client objects which may
call the service method. The specification of such a TT
method must contain at least the time triggering
specification and the output specification. There is no input
specification. The output specification indicates, for every
output expected from the execution of the TT method, the
exact time at or by which it will be produced and the nature
of every value carried in the output action,

4, Simulation design with TMO structure

The attractive basic design style facilitated by the TMO
structuring is to produce a network of TMO's meeting the
application requirements in a top-down multi-step fashion.
For each environment object represented by a state
descriptor in the Mini Theater TMO, there is a spontaneous
method (SpM) for periodically updating the state descriptor.
Conceptually the SpM's in the Mini Theater TMQ are
activated continuously and each of their executions is
completed instantly. The SpM's can then represent
continuous state changes that occur naturally in the
environment objects. The natural parallelism that exists
among the environment objects can also be precisely
represented by use of multiple SpM's which may be
activated simultaneously.

ITC-CSCC 2002

The service methods (SvM's) in the Mini Theater TMO
are provided as an interface for the clients outside the Mini
Theater. The only conceivable clients here are the enemy
which send RV*s into the Mini Theater to enter the Mini
Theater. Entry of an RV into the Mini Theater is
represented by and enemys call for the SvM “Accept RV,
Both the enemy and the external forces are represented by a
TMO called the Alien TMO.

So far, the Mini Theater TMO in Fig. 2 has been
interpreted as a mere description of the application
environment. However, if the activation frequency of each
SpM is chosen such that it can be supported by an object
execution engine, then the resulting Mini Theater TMO
becomes a simulation model. The behavior of the
application environment is represented by this simulation
model somewhat less accurately than by the earlier
description model based on continuous activation of SpM's.
In general, the accuracy of a TMO structured simulation is
a function of the chosen activation frequencies of SpM's.
Upon receiving the customers order, the system engineer
will first decide on the set of sensors and actuators to be
deployed in the Mini Theater. After the set of sensors and
actuators is determined, the Mini Theater TMO in Fig. 2 is
expanded to incorporate all the components enclosed by
square brackets.

Theater
Access Capability {to other TMO's) None
Object Data Store

Theater Space (=Sky+Land+Sea Space)
Defense Target in Land (=Command Post)

[Radar in Land }

[interceptor Launcher in Land }

[Fighter Airplanas {with interceptar Launchers}]
(0-n)RV's

[{0 - k) Interceptors]

SpM "Update the state descriptors in ODS"
Update the state of Defense Target in Land

[Update the state of Radar in Land]

[Update the state of Interceptor Launcher in Land]
{ Update the state of Fighter Alrplanes)

Update the state of RV's

[Update the state of interceptor's]

SvM
Accept RV (invoked by Alien RTQ)

Alien | -

Fig. 2. High-level specification of the Mini Theater TMO.

The ODS now contains the selected sensors (¢.g., Radar
in Land) and actuators (i.e., Interceptor Launcher in Land
with Interceptors). The radar and another interceptor
launcher on the fighter airplane are not shown in the ODS
of the Mini Theater TMO but these environment objects are
described in the corresponding parts of the state descriptors
for the command ship and the fighter airplane, respectively.

The Mini Theater Space component in the ODS of the
Mini Theater TMO not only provides geographical
information about the Mini Theater but also maintains the
position information of every moving object in the Mini
Theater. This information is used to determine the

occurrences of collisions among objects and to recognize
the departure of any object from the Mini Theater space to
the outside.

As the system engineer refines the single TMO
representation of the Mini Theater, a component in the ODS
of the Mini Theater TMO may be taken out of the Mini
Theater TMO to form a new TMO. such separation of the
command post from the Mini Theater TMO. Therefore, the
Command Post TMO and the Command Ship TMO are
born. When the new TMO's are created, the SvM's that
serve as front-end interfaces of those new TMO's and the
call links from the earlier born TMO's to the new TMO's
should also be created. As a result, the Mini Theater TMO
becomes a network of three TMO's. The two new TMO's
may describe or simulate the command post and the
command ship more accurately than the Mini Theater TMO
in Fig. 2 did.

5. Conclusion

The essence of the GG design paradigm advocated in this
and earlier publications by the author, which is also the goal
of the TMO structuring scheme, is to realize RT computing
in a general manner not alienating the main-stream
computing industry and yet enabling the system engineer to
confidently produce certifiable RTCS's for safety-critical
applications. This author believes that time is ripe for
vigorously pursuing this idealistic approach.

Although the potential of the TMO scheme has been
amply demonstrated, much further research efforts are
needed to make the TMO structuring technology easily
accessible to common practitioners. Further development of
TMO support middleware, especially those running on
new-generation RT kernels and multiprocessor hardware, is
a sensible topic for future research. Tools assisting the
TMO designer in the process of determining the response
time to be guaranteed are among the most important
research topics.

References

[11 A. Attoui and M. Schneider, “An object-oriented mode}
for parallel and reactive systems”, Proc. IEEE CS 12th
Real-Time Systems Symp., pp. 84-93, 1991

2] K.H.Kimetal, “A timeliness-guaranteed Kernel
model DREAM kernel and implementation techniques”,
Proc. Workshop on Real-Time Computing Systems and
Applications (RTCSA 95), Tokyo, Japan, pp. 80-87.0ct.
1995

{31 K. H. Kim and C. Subbaraman, “Fault-tolerant real-
time objects”, Commun. ACM pp. 75-82. 1997

[4] K. H.Kim, C. Subbaraman, and L. Bacellar, “Support
for RTO.k Object Structured Programming in C++>,
Control Engineering Practice 5 pp. 983-991, 1997

{51 K. H.Kim, “Object Structures for Real-Time Systems
and Simulators”, JEEE Computer 30., pp.62-70,1997

[6] G.J.K, S.D.Naand C.S.Bae, “ Time Service Guarantee
in Real-Time Distributed Object Oriented Programming
of TMO”, Proc.ICIM'01,pp.215-219,Nov.2001

{71 H.XKopetz and K. H. Kim, “Temporal uncertainties in
interactions among real-time objects”, Proc. I[EEE CS
Oth Symp. On Reliable Distributed Systems., pp. 165-
174,0ct. 1990

ITC-CSCC 2002

