A Realization of a Grounded Transconductor Using a CMOS Complementary Pair

Kazuhiro Shouno, Kazukiyo Takahashi and Michio Yokoyama Department of Bio-System Engineering, Faculty of Engineering, Yamagata University

4-3-16 Jonan, Yonezawa-shi, Yamagata 992-8510, Japan Phone: +81-238-26-3326, Fax. +81-238-26-3326, Email: shouno@yz.yamagata-u.ac.jp

Abstract: This paper describes a realization of a linearized transconductor using a CMOS complementary pair. The proposed transconductor is driven by a grounded signal source. How to cancel the offset current is described. Moreover, how to control the transconductance is described. It is shown that power consumption of the proposed transconductor without the control circuit is about half as low as that of the conventional Wang's OTA through computer simulation.

Keywords: Transconductor, grounded, OTA and complementary pair

1. Introduction

Recently, many techniques concerned with the linearized transconductors have been presented [1]-[3]. It is well known that the transconductors can be applied to many kinds of building blocks such as filters, multipliers, oscillators and so on. The linear V-I convertible input voltage range of the transconductors is called a linear input voltage range. Because the linear input voltage range affects the distortion of the output signal, it is desirable that the transconductance amplifier has a wide linear input voltage range.

It is known that the linear input voltage range of the Wang's OTA [1] is comparatively wide. This circuit includes three MOSFET's connected between the power supply lines, which means that this circuit requires comparatively high supply voltage. When we consider diminishing the supply voltage and power consumption, the number of the MOSFET's connected to the power supply lines should be decreased [3].

In this paper, a linearized transconductor realized by using a CMOS complementary pair is proposed. The proposed transconductor is driven by a grounded signal source. How to cancel the offset current is proposed. How to control the transconductance is proposed. The validity of the proposed method is confirmed by using the PSpice simulator.

2. Proposed method

2.1 Transconductor

Figure 1 shows the proposed transconductor realized by using the complementary pair. As shown in this figure, the circuit configuration of the proposed transconductor is similar to that of the CMOS digital inverter. When both of the transistor M_1 and the transistor M_2 operate in the saturation region, the drain currents I_{D1}

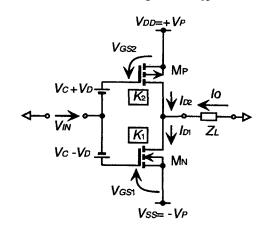


Figure 1. Proposed transconductor $(G_m > 0)$.

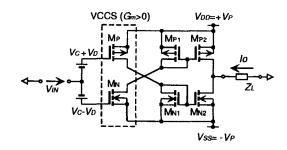


Figure 2. Proposed transconductor $(G_m < 0)$.

and I_{D2} can be given by

$$I_{D1} = K_1(V_{GS1} - V_{TN})^2 I_{D2} = K_2(V_{GS2} - V_{TP})^2$$
 (1)

where K_1 and K_2 are real. The voltages V_{TP} and V_{TN} are the threshold voltages of the pMOS and nMOS, respectively. Both of them slightly differ from each other. For the simplicity, we set

$$\begin{cases}
V_{TP} = -(V_T + \delta) \\
V_{TN} = V_T - \delta
\end{cases}$$
(2)

where V_T and δ are real. Because M_1 and M_2 are the complementary pair, we set

$$K = K_1 = K_2 \tag{3}$$

The gate-source voltages V_{GS1} and V_{GS2} are given by

$$V_{GS1} = V_{IN} + V_C + V_P - V_D V_{GS2} = V_{IN} + V_C - (V_P - V_D)$$
 (4)

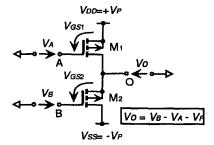
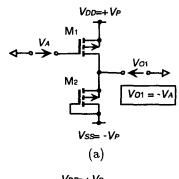



Figure 3. MOS subtractor [4].

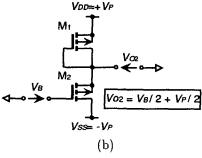


Figure 4. Building blocks. (a) Inverter, (b) Half-gain amplifier.

The output current I_O is given by

$$I_O = I_{D1} - I_{D2} (5)$$

From Eqs.(1)–(5), eliminating V_{GS1} , V_{GS2} , K_1 , K_2 , V_{TP} and V_{TN} leads to

$$I_O = 4K(V_P - V_D - V_T)(V_{IN} + V_C + \delta)$$
 (6)

where V_P is the supply voltage. The above equation indicates that the transconductance and the offset current can be independently controlled by varying the voltage V_D and V_C , respectively. The transconductance G_M is defined by $G_M = dI_O/dV_{IN}$. The transconductance G_M of the proposed circuit is given by

$$G_{M} = 4K(V_{P} - V_{D} - V_{T}) \tag{7}$$

The negative transconductance can be realized by using the current mirrors as shown in Fig.2.

2.2 V_D and V_C

In order to realize the batteries whose voltages are $V_C + V_D$ and $V_C - V_D$ shown in Fig.1, we use the MOS

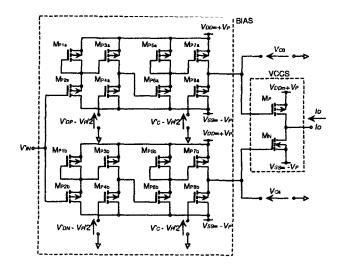


Figure 5. Proposed transconductor.

subtractor [4] shown in Fig.3. In this figure, the aspect ratio of the transistor M_1 is equal to that of the transistor M_2 . In this figure, both of M_1 and M_2 are p-channel transistors. The relationships among V_A , V_B and V_O are given by

$$\begin{cases}
V_P + V_{GS1} &= V_A \\
V_O + V_{GS2} &= V_B
\end{cases}$$
(8)

When no current flows out of the output terminal, the drain currents I_{D1} and I_{D2} are equal to each other. In this case, the gate-source voltages V_{GS1} and V_{GS2} become equal to each other. Substituting $V_{GS1} = V_{GS2}$ into Eq.(8) leads to

$$V_O = V_B - V_A + V_P \tag{9}$$

From the above equation, it is found that this circuit functions as a kind of subtractor. Let us consider the output voltage V_{O1} of the circuit shown in Fig.4(a). This circuit is equal to the circuit obtained by applying the power supply voltage $-V_P$ to the terminal B of the circuit shown in Fig.3. Substituting $V_B = -V_P$ into Eq.(9) gives the output voltage V_{O1} .

$$V_{O1} = -V_A \tag{10}$$

The above equation indicates that this circuit functions as an analog inverter. On the other hand, the output voltage V_{O2} of the circuit shown in Fig.4(b) can be determined by substituting $V_A = V_O$ into Eq.(9).

$$V_{O2} = \frac{V_B}{2} + \frac{V_P}{2} \tag{11}$$

The above equation indicates that this circuit functions as a half-gain amplifier whose bias voltage is $V_P/2$.

By using some of the circuits described in the above, the proposed transconductor shown in Fig.5 is obtained. In this figure, V_{O3} and V_{O4} become

$$V_{O3} = V'_{IN}/4 - V'_{DP}/2 + V'_{C} V_{O4} = V'_{IN}/4 - V'_{DN}/2 + V'_{C}$$
(12)

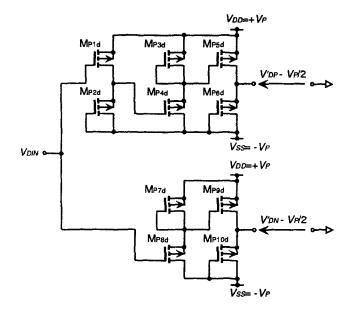


Figure 6. V_D .

From the above equation, we find that V_{IN} , V_C and V_D are given by the following equation.

$$V_{IN} = \frac{V'_{IN}}{4}$$

$$V_D = -\frac{V'_D}{2}$$

$$V_C = V'_C$$

$$(13)$$

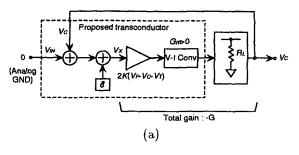
where $V_{DP}' = -V_{DN}' = V_D'$. The voltages V_{DP}' and V_{DN}' can be generated by using the circuit shown in Fig.6. In this figure, the output voltages are given by the following formulae.

$$V'_{DP} = -\frac{V_{DIN}}{2}$$

$$V'_{DN} = \frac{V_{DIN}}{2}$$

$$(14)$$

In Eqs.(6), (13) and (14), eliminating $V_{DP}^{\prime},\ V_{DN}^{\prime},\ V_{C}$ and V_{IN} leads to


$$I_O = 4K \left(V_P - \frac{V_D'}{4} - V_T \right) \left(\frac{V_{IN}'}{4} + V_C' + \delta \right) \quad (15)$$

2.3 Cancellation of the offset current

Figure 7(a) shows the block diagram for cancellation of the offset current. The blocks surrounded by the broken lines indicate the proposed transconductor. In this figure, V_X and V_C are given by

$$V_X = V_{IN} + V_C + \delta \tag{16}$$

$$V_C = -G \cdot V_X \tag{17}$$

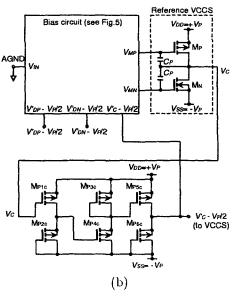


Figure 7. Offset cancel. (a) Block diagram, (b) Circuit configuration.

In the above equations, eliminating V_X leads to

$$V_C = -\frac{G}{1+G}(V_{IN} + \delta) \tag{18}$$

where -G is the total gain from the voltage V_X to V_C . When the gain G is sufficiently high, G/(1+G) becomes unity. When $V_{IN}=0$, the voltage V_C is approximated by

$$V_C \sim -\delta \tag{19}$$

From Eqs.(13), (15) and (19), we find that cancellation of the offset current is achieved by applying the voltage V_C' to the other transconductors. Because it is obvious that the gain G is proportional to R_L , the gain G can be easily made sufficiently high by removing R_L .

Figure 7(b) shows the proposed circuit which cancels the offset current described in the above. In this figure, C_{PS} are inserted to avoid the oscillation problem.

The resulting output current I_O and the transconductance G_M become

$$I_O = K \left(V_P - \frac{V_{DIN}}{4} - V_T \right) V'_{IN} \tag{20}$$

$$G_M = K \left(V_P - \frac{V_{DIN}}{4} - V_T \right) \tag{21}$$

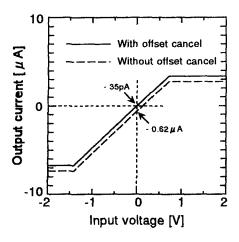


Figure 8. Simulation results of $I_O - V'_{IN}$ characteristics for $V_{DIN} = 0$.

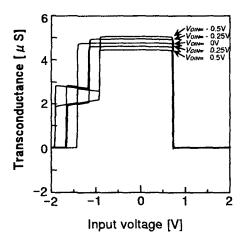


Figure 9. Simulation results of Transconductance characteristics.

3. Computer Simulation

In order to confirm the validity of the proposed method, simulation is carried out using the PSpice simulator. Channel width and Channel length of the MOSFET's are summarized in Tab.1. The element value of the capacitor C_P is 2pF. Figure 8 shows the $I_O - V'_{IN}$ characteristics corresponding to conditions $V_P=2.5 \text{V}$ ($V_{DD} - V_{SS}=5 \text{V}$) and $V_{DIN}=0 \text{V}$ at room temperature. From this figure, it is found that we can decrease the offset current by using the proposed method.

In this paper, a linear input voltage range is defined by the input voltage range where the transconductance deviation is within $\pm 1\%$. Figure 9 shows the transconductance characteristics. This figure indicates that the linear input voltage ranges are $2.1V_{\rm p-p}$, $1.9V_{\rm p-p}$ and $1.6V_{\rm p-p}$ for $V_{DIN}{=}0V$, $\pm 0.25V$ and $\pm 0.5V$, respectively. Moreover, it is found that the transconductance can be electrically controlled by varying V_{DIN} .

Table 2 summarizes comparison of power consumption. Form this figure, we find that total power consumption of the proposed transconductor is higher than

Table 1. Channel width and channel length.

MOSFET	$W[\mu m]/L[\mu m]$	
$M_{ m P}$	18/50	
M _N	8/50	
M_{P1}, M_{P2}	200/5	
M_{N1}, M_{N2}	100/5	
Others	10/10	

Table 2. Power consumption.

	Control	Transconductor	Total
Proposed	$387 \mu W$	$290\mu W$	$677\mu W$
Conventional	-	$604 \mu W$	$604\mu W$

that of the conventional one. However, power consumption of the proposed transconductor without the control circuit is 48.0% as low as that of the conventional one. Generally, when we apply the transconductors to the analog filter, some of the transconductors may be fabricated on the same IC chip. In this case, the required number of the proposed control circuit is only one. Therefore, it can be concluded that the amount of power consumption of the analog filter realized by using the proposed transconductors becomes lower than that of the conventional one when 2 or more transconductors are fabricated on the same IC chip.

4. Conclusions

In this paper, a linearized transconductance amplifier using a CMOS complementary pair is proposed. How to cancel the offset current is proposed. And, how to control the transconductance is described. It is shown that power consumption of the proposed transconductor is lower than that of the conventional one when 2 or more transconductors are fabricated on the same IC chip.

The further investigation is required to apply the proposed transconductor to an analog filter.

References

- [1] Z. Wang, "A CMOS four-quadrant analog multiplier with singhe-ended voltage output and improved temperature performance," *IEEE J. Solid-State Circuits*, vol.26, no.9, pp.1291-1301, Sept. 1991.
- [2] F. You, S. H. K. Embabi, and E. Sanchez-Sinencio, "Multi-stage amplifier topologies with nested gm-C compensation," *IEEE J. Solid-State Circuits*, vol.32, no.12, pp.2000-2011, Dec. 1997.
- [3] K. Takakubo, S. Takagi, H. Takakubo and N. Fujii, "Low voltage OTA using two-MOSFET subtractors between rails," *IEICE Trans. Fundamentals*, vol. E83-A, no.2, pp.197-203, Feb. 2000.
- [4] M. G. Johnson, "An input-free VT extractor circuit using a two-transistor differential amplifier," *IEEE J. Solid-State Circuits*, vol.28, no.6, pp.704-705, June 1993.