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Abstract: We propose a new numerical algorithm for
linear discriminant analysis which makes it possible to
update the discriminant functions with very low compu-
tational cost.

1. Introduction

To clarify the point of the issue, we first give a
brief summary for the framework of linear discrimi-
nant analysis (LDA). Discriminant analysis is a stan-
dard method for statistical pattern recognition [1}. In
pattern recognition, we use the term pattern to denote
the n-dimensional data vector £ € R™ whose compo-
nents are measurements of features of an object under
consideration. The main purpose in pattern recognition
is to determine the classc € I' = {1,2,---, M} to which
a given pattern vector & belongs, where M is the num-
ber of classes. The problem is reduced to finding the
discriminant functions g.(z), ¢ € I', such that

gc(x) = L“E‘% g () => x belongs to the class ¢. (1)

In LDA, the discriminant functions are determined by
the following procedure. For given d sample data of
pattern x(t) € R™ and class ¢(t) € I' to which =(t)
belongs (t = 1,2,---,d), we first solve the generalized
eigenvalue problem (GEP) of n-th order;

Agp = MG yp, (2)
where
1 M T
Aa= 37 3 (@5 -za) (@5~ 2a) (3
c=1
and

. t) et)\T
Gd=2t_zl(z(t)—5;§( ) (=6 - 25) (4)

are the between-class and within-class variance-
covariance matrices, respectively. Here

4 > d(e,c(t))(t)
Fg= %Zx(t) and Fi=E5—v—— (5
= > 8(ec(®)
t=1

are the mean vector of the whole sample patterns and
the mean vector of the sample patterns which belong
to the class ¢, respectively. (In Eq.(5), é(c,¢') = 1 for
c¢=¢ and 0 for ¢ # ¢.) It is important to notice that
M <« n < d holds in a generic case; For face identifica-
tion for example, M =~ 10 is the number of persons to
be discriminated, n >~ 10? ~ 103 is the number of pixels
of image and d ~ 103 ~ 10* is the number of the sample
image data. The GEP (2) has at most M — 1 nonzero
eigenvalues and there indeed exist M — 1 nonzero eigen-
values Ay > A > -+ 2> Apy—1 > 0 in a generic case.
Let p;, P, -+, Pas—; be the corresponding normalized
eigenvectors; p,Tdej = §(i,j). Then the discriminant
functions in LDA are given by

g:(2) = |PT(z - 23)|" (6)

with P = (p,p, - Ppr—y)- Obviously, the most expen-
sive part for determining the discriminant functions (6)
is in solving the GEP (2) and it is highly desired to
develop an efficient numerical algorithm for the GEP
(2). This is exactly our main subject. In this paper,
we concentrate on updating the discriminant functions
when some new sample data are added. In most ap-
plications of discriminant analysis, it is very hard to
construct the good discriminant functions which keep a
high rate for correct identification from the sample data
given at first and it is necessary to reconstruct the dis-
criminant functions by adding some new sample data.
For this purpose, an iterative method based on a nonlin-
ear matrix dynamical system has been proposed in [2].
In this paper, we propose an alternative new numeri-
cal algorithm. Our method is based on a direct method
and makes it possible to find the ezact updated discrim-
inant functions only with O(n?) arithmetic operations,
contrary to with O(n?) arithmetic operations which are
required to solve the GEP (2) in a direct manner.

2. Main Results

The standard numerical algorithms for the GEP with
a generic constraint such that Ay is symmetric and Gy
is positive definite symmetric in Eq.(2) follow the two
steps:
(I) Calculate the Cholesky decomposition Gy.
(II) By using the Cholesky decomposition G4, make
the problem reduce to a symmetric eigenvalue
problem of n-th order and solve it.
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Both of the steps (I) and (II) require O(n3) arithmetic
operations. The first step of our strategy is to make the
symmetric eigenvalue problem of n-th order in the step
(IT) reduce to a mathematically equivalent symmetric
eigenvalue problem of M-th order by using a specific
feature of the between-class variance-covariance matrix
Ag4 in Eq.(3). Indeed, we can show the following propo-
sition;

Proposition 1  Assume that the Cholesky decomposi-
tion of G4 is given; G4 = A4AY with an n-dimensional
lower triangular matriz Ay. Then the GEP (2) with
Eqgs.(3) and (4) reduces to a symmetric eigenvalue prob-
lem of M-th order which can be solved with O(n?) arith-
metic operations.

Proof Let us define an n x M matrix Uy by
| . _ - _
Ud=\/——M—($b—$d$§—$d ---a:,’,”—:cd). (7)

Then the between-class variance-covariance matrix can
be written as

Ad = UdUg‘ (8)

By multiplying U7 G3' = (A7'U4)TA;" from the left on
both sides, Eq.(2) reduces to an M-th order eigenvalue
equation

Adq = Aq 3 (9)
where

g=UlpeRY (10)

and the M-dimensional matrix Ay is defined by

Ay =UT0,4 (11)

with

Us = A7 U, (12)
A theorem of singular value decomposition (with a met-
ric matrix G) indicates that the nonzero eigenvalues of
Eq.(9) coincide with those of Eq.(2). After finding a
nonzero eigenvalue A # 0 and the associated eigenvector
g in Eq.{9), the corresponding eigenvector p in Eq.(2)
is obtained by the solution of a linear system

(13)

Since n > M, the reduction of Eq.(2) to Eq.(9)
brings about a substantial speed up for numerical com-
putation. If the Cholesky decomposition of G4 is avail-
able, we can solve the eigenvalue problem (9) with o(n?)
arithmetic operations. Note that Uy in Eq.(12) can be
determined by solving M linear systems with a com-
mon n-dimensional lower triangular coefficient matrix;
AqUy = Uy, Also Eq.(13) is solved with O(n?) arith-
metic operations if the Cholesky decomposition of G4 is
completed.

Gap =Uaq.

The second step of our strategy is to update the
Cholesky decomposition Gy = A4AL with a cheap
numerical cost when a new sample data of pattern
z(d+1) € R™ and class ¢(d + 1) € I" to which z(d+ 1)
belongs is added. This is indeed possible by the follow-
ing proposition;

Proposition 2  Let G4 = AgAT be the Cholesky de-
composition of G4. Assume that a new sample data of
pattern x(d + 1) € R™ and class c(d+ 1) € I is added.
Then the Cholesky decomposition of the new within-class
variance-covariance matriz

d41
=1 Z(t) ~e®)\T
Can = 375 ; (zt)-258) (=00 - 255) (19)
can be obtained with O(n?) arithmetic operations.
Proof After a somewhat lengthy but straightforward
calculation, we reach

Gor = Ga

K
— 4| A
ot

] (z(a+1) - 254)

x (a:(d +1) - :iﬁ"’“’)T

;i:11 d(e(d + 1),c(t)) (:-i:c(d-{-l) _ ic(d-{-l))
d +1 d+1 d

T
x (e - 2{)

Eq.(15) shows that G441 is obtained by adding a rank-
one perturbation to G4 and subtracting a rank-one per-
turbation successively. Thus we can use the technique of
the Cholesky updating/downdating {3] (see Appendix for
details), which makes it possible to obtain the Cholesky
decomposition of Gy from Ay with O(n?) arithmetic
operations. ]

(15)

Since the updating of the between-class variance-
covariance matrix Ay (actually the updating of U in
Eq.(7)) is carried out with O(n) arithmetic operations,
we can update the discriminant functions only with
O(n?) arithmetic operations by combining the methods
described in the proof of Propositions 1 and 2.

3. Numerical Experiment

Numerical experiment has been performed on Sun
microsystems workstation (OS: Solaris 2.6, CPU: Micro
Sparc 100 MHzx2, Main Memory: 128 MB, Compiler:
g77 ver.2.95.2 with option -03’). In Table 1, we show
the execution time for updating the Cholesky decompo-
sition of the within-class variance-covariance matrix G4
when a new sample data of pattern 2(d + 1) € R™ and
class ¢(d+1) € I' is added. The second line (PM) is the
execution time for the proposed method in Proposition
2, while the third line (CM) is the execution time for the
conventional method. In the latter case, an additional
O(n®) procedure (matrix product and Cholesky decom-
position) is required. We has utilized dpotrf routine
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Table 1. Execution time for updating Cholesky decom-
position of G4 for d = 1000, M = 10. PM and
CM are for proposed and conventional methods,

respectively.
data dim. n || 100 | 300 | 500 700 900
PM (sec) 001005} 013 | 0.28 [ 041
CM (sec) 0.94 | 893 | 25.68 | 52.87 | 89.93
speed up 94 | 178 | 197 188 219

in LAPACK ver.3.0 for the Cholesky decomposition of
the new within-class variance-covariance matrix Gg41.
Table 1 shows that the proposed method is quite satis-
factory; Compared to the standard O(n®) procedure,
the speed up for updating the within-class variance-
covariance matrix Gy by the proposed method is about
100 ~ 200 for a wide range of the matrix size covering
n =~ 100 ~ 900. Together with the method in Proposi-
tion 1, we expect to update the discriminant functions
within at most a few seconds when a new sample data
is added.

One of the authors (T.S.) thanks Dr. Kazuyuki Hi-
raoka for fruitful discussions and helpful comments.
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Appendix Cholesky Updating/Downdating

Let G be an n x n positive definite real symmetric
matrix and let

G = AAT

be the Cholesky decomposition of G, where A =
(lalz+--1,) is a lower triangular matrix. We consider
how the Cholesky decomposition (16) of G is perturbed
if a rank-one perturbation zz7 (x € R") is added
to G, or subtracted from G. We will see that the new
Cholesky decomposition after the rank-one perturbation
can be calculated with O(n2) arithmetic operations by
using A and z in a direct manner.

Al Cholesky Updating
We first consider the case that a rank-one perturba-
tion is added to G. Let us define

G=G+ezz".

(16)

an

Note that G is symmetric and still positive definite, and
hence G has the Cholesky decomposition.
A first note is that Eq.(17) is rewritten as

G = AAT 4 z2T = Q0T (18)
with an n x (n + 1) matrix
Qo = (A mo) = (1112 .. -l,,:vo), (19)

where we set o = @. So, in order to obtain the
Cholesky decomposition of G, we have only to find an
(n +1) x (n + 1) orthogonal matrix P such that

QP = (A zo)P = (A 0), (20)
where A is a lower triangular matrix, giving the
Cholesky decomposition of G; G = AAT. Note that
the matrix Qp in Eq.(19) has such a form as

* [ ]
* ¥ L4

Q=] : 1 - b (21)
* ¥ * * [ ]

* % * X * ©

where asterisks and black dots indicate the non-zero en-
tries. To find an orthogonal matrix P in (20), we first
multiply an (n + 1) x (n + 1) rotation matrix

cos by —sinf;
1
R1 (91) = (22)
1
sin 6y cos by
with
To.L (23)

L \
cosé = -—¢—2——, sinf = ———a——
2 2 2
vll,l +Zp,1 \/11,1 + 2,

to 2o from the right. Then we can eliminate the first
component {top black dot) in the last column of Qg;

Ql = QoRl(gl) = (ill2 o 'lnxl)

* 0
L L4

= |- ;| 29
X x % % ®

* % * ¥ ¥ @

A gimilar procedure can be applied to eliminate the k-th
component in the last column of 2 successively (k =
2,3,---,n). If we define

Qk = Qk_le (0),) (25)
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successively by using an (r+1) x (n+1) rotation matrix

k n+1
1
1
Ri(0;) = k cos 8y . —sginfy (26)
1
n+1 sin 8, cos By,
with
{ . Tp—
cosy = ———5 ___  sinfp = =k (27)
V Gr+2i_ix \/112:,1: +T3 4
then the matrix ; has such a form as
Qk = (il . 'iklk+1 i 'lnzk)t (28)
where the submatrix (il .- -iklk+1 ---l,) is lower trian-

gular and the first k elements in the last column x, are

zero. By iterating this process for £ = 1,2,-.-,n, we
have
QP = (A 2o)P = (ilz---1,0) (29)
with an orthogonal matrix
P = Ry(01)R;(02) - - - Ry (6)- (30)

Since A = (Liy---1,) is a lower triangular matrix, it
gives the Cholesky decomposition of G; G = AAT.

A2 Cholesky Downdating

We now turn to the case that a rank-one perturbation
is subtracted from G. Let us define
G=G-zz", (31)

where & € R" is arbitrary as long as G is positive defi-
nite. A first note is that Eq.(31) is written as

G =G+zxT = Q0T (32)
with an n x (n + 1) matrix
Q0 = (]\ 30)’ (33)

where we set 9 = x. Thus, in order to obtain the
Cholesky decomposition of G, we have only to find an
(n+ 1) x (n + 1) orthogonal matrix P such that
QP = (A 20)P = (A 0), (34)
where A = (I3l - -1,,) is a lower triangular matrix, giv-
ing the Cholesky decomposition of G; G = AAT. The
first step for this purpose is to find a rotation matrix
R;(6:) in Eq.(22) such that
(@1l - Tazo)Ri(61) = (L2

- ln1), (35)

where the first component of ; € R”™ is zero. This
is indeed possible as follows. Since lk 1 =0k =
2,3, -,n) by assumption and R; (6,) is orthogonal, we
have i + 23, =12, or

ha =B, -23s (36)
which determines the rotation angle 6, ;
cosfy = %1:%, sinf, = :;10—11 37)
From the relation
cosOyl; +sinby@p =1y, (38)
we have
b=t )
Finally
2y = cosb o — sinb:l;. (40)

A similar procedure can be applied successively. Sup-
pose that we have

Qo1 = (- bemaly -+ Tnpr), (41)

in advance at the k-th step, where the submatrix
@y lpaly - 1,.) is lower triangular and the first k—1
components of xr_; are zero. Then, using Ri(f) in
Eq.(26), we obtain

Qe = Qe_1Rx(6r), (42)
namely
(11 .. lk—llkik+1 e i,.a:k)
=y bprlplpyr - - - Lnr—1) Ry (O1), (43)

where the rotation angle 8y, the k-th new vector I and
xj, are determined as follows;

e = l%,k - wiq,k’
cos by = %ﬁ, sinfy = -—z'l“_l"‘,
k.k k.k
ik - lk — sin szk_l
cos 6y,
) = cosOxxy_q1 — sinbily. (44)

By construction, the first £ — 1 components of I; as well
as the first k components of z;, are all zero. By iterating

this process for £k = 1,2,---,n, we have
QP = (A zo)P = (Il 1,0) = (A 0) (45)
with an orthogonal matrix
P = Ry(61)R2(62) -+ - Rn(6)- (46)

Thus Eq.(34) is established and, in particular, the lower
triangular matrix A= (1112 l,.) determined by the
iterative process in Eq. (44) gives the Cholesky decom-
position of G; G = AAT.
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