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Abstract: Synchronization phenomena of chaos ob-
served in a dual-structured system is presented. The
system is consisting of two identical piecewise-linear
systems and the simple coupling between the two sys-
tems enables the synchronization of the chaotic behav-
ior. An application of the proposed dual-structure to a
real power system for the parameter value identification
is also presented.

1. Introduction

Two systems of the same structure and of the same
parameter values can be synchronized by supplying the
signal from one to the other even when they behave
chaotically. This phenomenon is called synchronization
of chaos [1].

In this paper a dual-structured system is proposed
and is presented as a simple example that enables the
chaos synchronization without complicated system con-
figurations. The system is consisting of two identical
piecewise-linear systems that the author has derived and
investigated (2, 3] to have found that they exhibit chaos
for a wide range of the parameter value. And using a
real system including laboratory generator the similar
dual-structured system is experimentally studied to in-
dicate that the validity of the proposed structure in the
real situations.

2. Configuration of the two identical
systems

The system to be investigated in this paper consists
of two identical subsystems as shown later in Figure 4.
In this section, one of the two identical subsystems as in
Figure 1 is described. It consists of a second-order lag el-
ement, two first-order lag elements, a gain element and a
feedback-loop with a piecewise-linear limiter [2,3]. This
model has been derived from a typical power system
model, in which chaotic behavior were observed both
numerically [4] and experimentally. Though it has been
derived from a power system model, the model rather
represents generic characteristics of 4-dimensional sys-
tems not limited to power systems.

This simple system consists of serial connection of
typical basic linear elements, the nonlinearity lies only
in the feedback loop which is piecewise-linear saturation
element, and only one equilibrium point exists. But it
exhibits chaotic behavior for a fairly wide range of the
parameter values.

If the state variables z3,z3, x4 are chosen as in Fig-
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Figure 1. The model

Table 1. parameter values
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ure 1, the differential equation of the model becomes

£ = =20z — (a® + ) {zs + fi(Kz4)} (1)

2 = @1 (2)

Tl .’L‘.3 = Zo -3 (3)

Ty %4 T3 — T4 (4)

where

U (Kzq4 > U)

filKzg) =4 z (L < Kz4 <U) (5)
L (KIE4 < L)

Parameter values shown in Table 1 are used in the
simulation. These values were chosen based on the
dynamical characteristic of the original power system
model. The lower bound L of the limiter is canceled for
simplicity in the analysis of this paper.

Equations (1)-(5) can be expressed with matrices as

Az (LLKzys <U)
Bz —p) (U< Kzy) (6)
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T =

where

x="z1 T2 T3 4) ‘ (7)
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Figure 2. Bifurcation set on the parameter plane of K-T5

—20 —(?+3) 0 —(*+PK
A 1 0 0 0
= 1 1
0 0 75 -7
(8)
-2a —(@*+p6%) 0 0
1 0 0 0
B= 1 1 9
0 kA0 ©)
0 0 PO
(o +p2)U
- 0
_ p-1
0
(o + F*)L
0
_ p-1
q=B 0 (11)
0

Figure 2 shows the various bifurcation points and the
region where chaotic motion was observed for the values
of the feedback gain K and the time constant of a first-
order lag element T5. At the curve denoted by H, we saw
the jumping from the equilibrium point to a limit cycle
and at the curve fl, flip bifurcation (period-doubling
bifurcation). In the left region of the curve H (labeled
as ) the equilibrium point is stable. The region
where chaotic behavior arises is indicated by chaos.

If the values of K and 75 are varied in a wider range,
Figure 3 is obtained. It indicates that the chaotic region
spreads over the large region and the periodic windows
are located in a regular manner.

3. Dual-structured system

Combining the two identical systems of the configu-
ration shown in Figure 1 by adding the coupling from
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Figure 3. Bifurcation set on the parameter plane of K-T»
(in a wider range)

one to the other, a dual-structured system as in Figure 4
has been derived.
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Figure 4. Dual-structured system

As seen in Figure 4, Systeml is not disturbed by
System2, and System?2 is disturbed by the signals from
Systeml. The extent of the disturbance into System?2
depends on the coupling coefficients r,, 7, T which
range from 0 to 1. When the coupling coefficient is 0,
no signal from System]l is fed into System2, i.e., there
is no coupling. When it is 1, the feedback loop is cut
out at the coupling point, and the signal at the same
point of Systeml is directly fed to System2. So, if the
coupling coefficient is 0, Systeml and System2 behave
just separately, while if it is 1, Systeml and System2
are naturally supposed to make the identical behavior
under the condition that the open-loop characteristic is
stable, i.e., non-oscillatory. According to this character-
istic, you can expect these two system’s chaotic behav-
ior will synchronize when the coupling coefficients rq, 13
and r. are set to appropriate values from 0 till 1.
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Figure 5. Synchronization of the chaotic behavior of Sys-
teml and System2

4. Synchronization of chaos

Simulation results of this dual-structured system are
shown in Figure 5. Figure 5(a), (b) and (c) indicate how
correlated Systeml’s behavior and System2’s behavior
are when (% is varied as depicted below each figure.
These results are obtained with 7, = 0.5, rp = 1. =0
and other-parameter values are same as in Table 1. Fig-
ure 5 means that the chaotic behaviors of both systems
are in synchronization when the parameter values of Sys-
tem! and System?2 are identical.

5. Case study of a real power system

To see the practical validity of the proposed dual-
structured system and the observed phenomena of chaos
synchronization in it, experimental studies of the chaos
synchronization were done using the real laboratory
power system. Figure 6 shows the dual-structured power
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Figure 6. Dual-structured power system

Figure 7. Laboratory motor-generator set

system to be investigated experimentally. Systeml, the
upper half of Figure 6, is the real power system in a lab-
oratory equipment. And System2, the lower half, is the
virtual system computationally realized in a computer.

In Figure 6, Gen. indicates a generator, AVR in-
dicates Automatic Voltage Regulator that controls the
generator voltage V; by adjusting the excitation voltage
es. Note that the subscripts of 1 and 2 indicate that
the variables or parameters are involved with Systeml
and System2, respectively. For example, es; indicates
the excitation voltage of Systeml.

The laboratory power system (Systeml) consists of
the motor-generator set, the combination of a direct cur-
rent motor (the substitution for the steam turbine of the
real power plant) and a 3-phase synchronous generator
coupled through a rotation shaft as shown in Fig. 7.
The generator is electrically connected to the external
system of a power company via equivalent transmission
lines.

Each figure in Figure 8 shows the correlation of the
two subsystems in the dual-structured power system.
The generator inertia time constant Ma (s), one of the
parameters of the virtual power system (System?2) is var-
ied as indicated below the figures. The coupling coeffi-
cient r4 and rp are set to be 0.7 and 0.6, respectively.
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The correlation diagrams like these for many other
values of M, yield Figure 9, where V;op indicates cross-
sectional points of V;2. The cross section is the vertical
line of V31 = 0.9 p.u.

Though the true value of the corresponding param-
eter of M, in Systeml, i.e. Mj, is not known because
System1 is not a mathematical model but a real one, the
expected value of M; by the designer of the machine is
10 s. Unlike Figure 5, even when the parameter values
of the two systems are supposed to be identical, System1
and System2 do not completely synchronize, but higher
correlation can still be observed.

6. Conclusion

The application aimed with the proposed dual-
structured system is the parameter value identification.
In order to identify the parameter values in System1l
(which is supposed to correspond to a real system), the
value of the corresponding parameter is varied in Sys-
tem2 (realized with computer simulation) and check if
the chaotic behavior of the both systems synchronize or
not, thereby the parameter value can be identified.

How easily the both system are synchronized depends
on the values of coupling coefficients. That means we
can make an adaptive way to let the estimation value
converge to the true value. For example, first we set
the coupling coeflicients to 1 or a value very close to
1, so that we can easily estimate the parameter value
roughly. And gradually decreasing the value of the cou-
pling coefficients, better estimations of the parameter
value can be made by utilizing the increasing sensitiv-
ity of the chaos synchronization to the parameter value
inconsistency. ‘
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Figure 8. Correlation of the chaotic behavior of the dual-
structured power system
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