YS-1 ## Studies of Allyl Alcohol Radical Polymerization by PFG-HMQC and HMBC NMR at 750 MHz Sung Joon Oh^{1,2}, David R. Kinney³, and Wei Wang³, Peter L. Rinaldi^{2*} ¹Current Address: LG chem. / Research Park, 104-1 Moonji-Dong, Yuseong-Gu, Daejon 305-380, Korea ²Department of Chemistry, Knight Chemical Laboratory, The University of Akron, Akron, Ohio 44325-3601 ³Lyondell Chemical Company, 3801 West Chester Pike, Newtown Square, PA 19073 The structures of poly(allyl alcohol) were characterized by one- and two-dimensional gradient enhanced heteronuclear multiple quantum coherence (gHMQC) and gradient enhanced heteronuclear multiple-bond connectivity (gHMBC) NMR spectroscopy. Main chain structures and chain-end structures were identified from the spectra. The polymerization of allyl alcohol can be described by degradative chain transfer to allyl alcohol monomers, which results in distinctive chain-ends as well as low molecular weight polymers. After the allylic hydrogen abstraction by initiator radicals, allyl radicals produce chain-ends with vinyl groups and aldehyde groups. The chain-ends were identified by the correlation peaks in gHMQC and gHMBC spectra.