YS-3 ## Solution Structure of α -Conotoxin OmI, a Neuromuscular toxin Specific for the α_4/β_2 Subunit Interface of Neuronal Nicotinic Acetylcholine Receptor ## Seung-Wook Chi, Do-Hyoung Kim* and Kyou-Hoon Han Laboratory of Proteome Analysis, Division of Genomics and Proteomics, KRIBB, Yusong P. O. Box 115, Taejon, Korea α -Conotoxin OmI, a 17-residue polypeptide isolated from the venom of the cone snail Conus magus, is a potent toxin which specifically blocks the mammalian neuronal nicotinic acetylcholine receptors composed of α_4/β_2 subunits. The three-dimensional solution structure of α -conotoxin OmI has been determined by two-dimensional ¹H NMR spectroscopy. The α -Conotoxin OmI adopts a well-defined compact structure with a global fold common to a α -4/7-subfamily of α -conotoxins. The backbone folding is stabilized by two disulfide bonds which connect the N-terminus to both the middle and C-terminus of the structure. The unique binding preference of α -conotoxin OmI to the α_4/β_2 subunit interface of neuronal nicotinic acetylcholine receptor has been studied through structural comparison with various α -conotoxins possessing distinct receptor subtype specificities. Funding for the above work has been supported by NSM0140132 from the Ministry of Science and Technology of Korea to K. H.