The Design and Implementation of a Reusable Viewer Component

Hong Gab Kim, Young Jae Lim, Kyung Ok Kim

Spatial Information Technology Center, Computer & Software Laboratory, ETR1
161 Kajong-Dong, Yusong-Gu, Taejon 305-350, KOREA
Phone : +82-42-860-5327
Fax : +82-42-860-4844
E-mail : { gabbi, yjlim, kokim } @etri.re.kr

Abstract

This article outlines the capabilities of a viewer component called GridViewer, and proves its reusability. GridViewer was

designed for the construction of the image display part of GIS or remote sensing application software, and consequently it is

particularly straightforward to closely couple GridViewer with access to very large images. Displaying is performed through

pyramid structure, which enables to treat very large dataset up to several gigabytes in size under the limited capability of PC.

GridViewer is free from responsibility to handle various formats of raster data files by taking grid coverage, which is designed

by OGC to prorriote interoperability between implementations done by data vendors and software vendors providing analysis

and grid processing implementations. GridViewer differs from other such viewer by allowing for clients to extend its function

and capability by using small set of methods originally implemented in it. We show its reusability and expandability by

applying it in developing application programs performing various functions not supported originally by the GridViewer COM

component,

1. Introduction

A viewer, image display part of image processing software
including GIS and remote sensing software, fundamentally
visualizes raster datasets on the screen. When a viewer has
only responsibility to display images, it is easy to develop
and maintain it. Recently, a viewer plays not only display
part but also communication part between a user and image
processing programs. For example, many operations, such as
creating region of interest, displaying and editing vector data,
adding annotation, and collecting ground control points,
including basic functions such as zooming and panning, are
accomplished on the viewer. The more functions executed
on the viewer, the less reusability of the viewer, because the
viewer becomes complicated and depend on the other part

associated with the added functions.

The goals of GridViewer are to provide a reusable viewer
component for development of various applications used in
GIS and remote sensing field. GridViewer can display very
large datasets up to several gigabytes in size and is free from
various formats of raster data files by taking advantage of

grid coverage[1][2].

2. Architecture of GridViewer

GridViewer contains five managers in it as shown in figure 1.
Layer manager plays an important part in managing input
grid coverages and accessing to raster datasets through grid
coverages. Draw manger displays raster datasets according
to the zoom ratio and displaying region and tool manager

handles user’s action to the viewer. Coordinate conversion



manager converts coordinate unit among screen, grid(image)
and georeferenced coordinates. Cache manager enables fast

display by reducing frequency of access to the large datasets.

MoEse Ke;Soard

rid Viewer Control

Tool Manager
Tools Il

Grid Coverage Layer Manager | Draw
Manager

(trom Client) -
Layers II

Coordinate
Conversion
Mananager

Cache
Manager

Events
(to Other Component or Client)

Figure 1. Architecture of GridViewer

2.1 Layer Manager

Layer manager P!ays-a fundamental part to manage grid
coverages fed into GridViewer and access raster datasets
through them when draw manager requests a block of raster
dataset to draw. Only layer manager has right to access and
read datasets and all modification of raster dataset is
performed out of GridViewer. This restriction facilitates

persistent synchronization of raster data.

2.2 Cache Manager

It is impossible to load whole raster dataset on the memory
and display it, because the raster dataset can be very large up
to several gigabytes in size. GridViewer only fetches a block
of raster dataset displayed on the window from the whole
raster dataset. GridViewer makes image tiles from a fetched
data block and draw them on the window. When image tiles
no more need to be displayed, cache manager puts them into
the cache instead of destroying them instantly. Later, draw
manager does not request a block of raster dataset to the
layer manager but uses the cached tiles, if the image tiles
exist in the cache. With reducing frequency of access to the
datasets, GridViewer improves panning and zooming speed.
The cache replacement strategy used in cache manager is on

the basis of aging concept that the oldest image tile must be

replaced when local cache is full. Cache manager increases
the ages of all image tiles according to their proximity-
distances. The aging of all cached image tile increases in
proportion to the distance between each image tile and

region displayed on the window[3][4].

2.3 Tool Manager

Tool manager activates or deactivates the tools, such as
zooming tool and panning tool, contained in GridViwer. The
activated tool executes their tasks according to the user’s
action occurring on the viewer. When all tools in the
GridViewer are deactivated, user’s actions to the viewer, for
example, moving a mouse and clicking the left button of a
mouse, are notified to the client by firing events. The other
tools that are not supported by GridViewer can be embodied

in the client side with these events.

2.4 Draw Manager

Draw manager calculates the region to be displayed on the
window, requests blocks of raster dataset to layer manager
or cache manager and displays them on the window. Draw
manager fires an event to the client whenever it finishes
drawing fetched image tiles. The client can embody virtual
layers by using the event, on which client can draw anything

for itself.

2.5 Coordinate Conversion Manager
Coordinate conversion manager can perform various
coordinate unit conversion among window, image and

georeferenced coordinates.

3. Implementation and Applications

The developed GridViewer COM component is available
under rapid application development environment, Visual
Basic, Power Builder, JavaScript and even script language
such as JavaScript and VBScript, because it supports dual
interface. This component has small set of methods. The

methods not supported by it can be embodied by using its



original methods in the client or other components working

together with it.

3.1 Magnifier Window

Viewer 1{Client of GridViewer1) Magnifier Window(Client of GridViewer2)

IDispatch () (Dispatch ()
IGridviewer () IGridViewer ()

- . Magnifier o
Viewer 1 I l Gridviewer] I | Window rigVi

CotvertWindowCoordToGridCoord{ROI}

Reiresh(RO1)

Calculate Zoom Factor
and Center Pgint

DoZoom(ZoomFactor )

Move(CenterPoint)

Figure 2. Structure and message diagram for a magnifier

window

The magnifier window is a viewer to display the specified
region on the original viewer at different zoom ratio.
GridViewer does not have this function, but it can be
developed easily with GridViewer component. As shown in
figure 3, if the region to be magnified is changed,
viewerl(client of gridviewerl) calculates the image
coordinate of the region by coordinate conversion methods
of gridviewer] and passes it to the magnifier window(client
of gridviewer2). The magnifier window displays the
requested region by calling the zooming and panning

methods of gridviewer2. Figure 3 shows the developed

magnifier window.

Figure 3. A sample of magnifier window

3.2 Vector Overlay

Vector overlay, to draw vector data on an image, is can be
easily implemented by using coordinate conversion method
of GridViewer. GridViewer fires an event to the client when
it finishes drawing process. The client converts coordinate
unit of vector data to window coordinate unit and draws
them on the device context given as one of barameters.
Figure 4 shows a sample client performing vector overlay.
Any other functions can be embodied easily in the client in
similar manner as explained above. Figure 5 shows an
example client of GridViewer. It can perform additional

operations such as creating region of interest and collecting

ground control points.

Figure 4. Vector overlay

Figure 5. A sample client with GridViewer



5. Conclusion

GridViewer, a viewer component for remote sensing and
GIS application software is proposed and developed.
Displaying is performed through pyramid structure, which
enables to treat very large dataset up to several gigabytes in
size under the limited capability of PC. GridViewer is free
from responsibility to handle various formats of raster data
files by taking grid coverage. It has a small set of mandatory
methods, but the functions not supported by them can be
added by using its original methods in the client program or
other components working together with it. It is easier to
maintain the viewer module because the viewer does not
have to be changed in order to add other functions. The
developed viewer component has been applied to various
applications, such as a magnifier view, vector overlay, and
creating region of interest, so as to prove its reusability and

extensibility.

6. Reference

[1] OpenGIS Consortium Technical Committee, The
OpenGIS Guide, 1998

[2] OpenGIS Consortium, OpenGIS Implementation
Specification: Grid Coverage, Revision 1.0, 2001

[3] Dae-Soo Cho, Kwang-Soo Kim, and Jong-Hun Lee,
Design of Client-side Caching and Region Prefetching
Algorithms for Internet GIS, Proceeding of International
Symposium on Remote Sensing 2001, pp.100-103,
October, 2001

[3] Owen, M.J, Lui, AK, Lo, EH.S, Grigg, M.W, The
design and implementation of a progressive on-demand
image dissemination system for very large images,
Computer Science Conference 2001. ACSC2001.
Proceeding 24th Australia, pp.148-155, 2001

-~ 69



