The Implementation of a Pipe-lined Grid Coverage and Grid Coverage Processor

Hong Gab Kim, Kyung Ok Kim

Spatial Information Technology Center, Computer & Software Laboratory, ETRI
161 Kajong-Dong, Yusong-Gu, Taejon 305-350, KOREA
Phone : +82-42-860-5327
Fax : +82-42-860-4844

E-mail :

{ gabbi, kokim }@etri.re.kr

Abstract

This paper describes the way to embody the grid coverage and the grid coverage processor which can construct pipelines. The

pipeline constructed by the developed grid coverages has internal pipelines that have different resolution and it provides the

way of access to very large datasets efficiently. Several operations, such as filtering, image enhancement and band operation,

are embedded in the developed grid coverage and grid coverage processor COM components. The practical usefulness of the

developed grid coverage and grid coverage processor has been proven by applying them in developing an image processing

software for very large images.

1. Introduction

With the advent of new high 'fesolution satellites and the
amount of data significantly increasing, it is imperative that
the software meets the challenges of processing such large
datasets[1][2]. The Open GIS Consortium (OGC) released
Grid Coverage Implementation Specification on January
2001, one of whose goals is to allow for efficient access to
very large datasets up to several gigabytes in size.
GP_GridCoverageProcessor, the optional interface in this
specification, provides operations for different ways of
accessing the grid coverage values as well as image
processing functionality. This interface has been designed to
allow the adaptations to be done in a pipe-lined manner. The
interface does not need to make a copy of the source grid
data. Instead, it can return a grid coverage object which
applies the adaptations on the original grid coverage
whenever a block of data is requested. In this way, a

pipeline of several grid coverages can be constructed

cheaply and it can treat large dataset very efficiently and fast.

Unfortunately, the implementation specification released by
OGC only describes “what” interfaces and methods have to
be implemented and doesn’t mention “how” they can be
embodied. This paper explains the way to develop the grid
coverage and the grid coverage processor which can treat

large datasets in pipe-lined manner and its applications.

2. Grid Coverage and Grid Coverage Processor

In 1994, the Open GIS consortium (OGC) was founded in
response to wide-spread recognition of the problem of non-
Through the OGC

introduced

standards
Open GIS

interoperability[3].
development process, it
Implementation Specification for Grid Coverage[4]. It is
composed of three packages such as general coverage
specification(CV) grid coverage(GC), and grid coverage

processing{(GP). GP_GridCoverageProcessor, the optional

interface in GP, provides operations for different ways of
accessing the grid coverage values as well as image
processing functionality. This interface has been designed to
allow the adaptations to be done in a pipe-lined manner. The
interface does not need to make a copy of the source grid
data. Instead, it can return a grid coverage object which
applies the adaptations on the original grid éoverage
whenever a block of data is requested. In this way, a pipeline
of several grid coverages can be constructed cheaply and it
can treat large dataset very efficiently and fast. Figure 1

illustrates how to create a grid coverage and to perform a

simple image processing operation, threshold, in the pipeline.

rg., \ (oaEeda

= o
mage i Pxocassar I
creataFromFiiChamctorsting) |

[S

|
|
I ‘
T
| o
B e S
| T

Figure 1. Grid coverage processing using the discovery

mechanism.

3. Implementation

In the developed grid coverage COM component, a grid
coverage processor only plays part to create new grid
coverage object and add it into a pipeline. Access to datasets
1s performed in a grid coverage. A grid coverage processor
is a factory to create a new grid coverage object and is
allowed for access to member variables of the new grid
coverage object. It means that a grid coverage processor is
depend upon the grid coverages to be created by it. A grid

coverage processor is destroyed after it completes its duty to

create a new grid coverage object and add it into the pipeline.

A block of datasets flows in the pipeline only when the
client requests them. On being passed to the client, the block
of data is destroyed in the pipeline. Thus, the amount of data
flowing in the pipeline is equal to the size of data requested
by the client with getDataBlockAsXXX method regardless
of the number of grid coverages in the pipeline and the total
size of raster datasets. Figure 2 shows pseudo code for
doOperation, a method of a grid coverage processor, and

getDataBlockAsX XX, a method of a grid coverage.

/im_SourceGridCoverage : pointer to GC_GridCoverage interface of source grid coverage
GC_GridCoverage MyGridCoverageProcessor::doOperation

(CharacterString opeartionName, Sequence<GC_Parameter> parameters)
/fparameter{0] contains the source grid coverage interface
{

If operationName == “Operation]” &é& parameters[0}.name = “SourceGridCoverage”

MyGridCovearge GridCoverageObject = new MyGridCoverage
GridCoverageObject.m_SourceGC = parameters{0}.value
/fm_SourceGC is not a intcrface but member variable of MyGridCoverage class
return cast<GC_GridCoverage>GridCoverageObject

}

Else

//no matched operation
}
)

Sequence<XXX> MyGridCoverage::GetDataBlockAsXXX(GC_GridRange GridRange)
{
//Request a block of raster data to the source grid coverage
Sequence<XXX> SourceData = m_SourceGridCoverage.GetDataBlockAsX X(GridRange)
Process(SourceData) //perform processing feiched block of data
Return SourceData /freturn processed data

}

Figure 2. Pseudo code for doOperation method
and getDatablockAsXXX method

GC_GridCoverage MyGridCoverage::getOverview({Intcger overviewIndex)

/im_SourceGridCoverage : pointer 10 GC_GridCoverage interface of source grid coverage

MyGridCoverage OverviewQObj = new MyGridCoverage //clone 1o create an overview

OverviewObj.m_numOverviews = 0

/fm_numOverview is a member variable of MyGridCoverage class.

//an overview does not have other overviews

OverviewObj.m_SourceGridCoverage =
mSourceGridCoverage->getOverview(overviewlndex)

/lereate pipeline for overviews

return cast<GC_GridCoverage>OverviewObj

Figure 3. Pseudo code for getOverview method

When a source gird coverage supports overviews with
different resolutions, there is no need to write additional
code to process data fetched from overview of the source
grid coverage in a new grid coverage. Instead, when an

overview of new grid coverage is referenced, the internal

pipeline for the overview is constructed. Figure 3 and figure
4 show pseudo code and procedure to construct a pipeline
for overviews when an overview of new grid coverage is

referenced.

0 0 ' ! ! |
1 t] 1])
) 1 1 1 E]
l' doQperation : : o : : :
] ¥ > new’ > | i
1 1 1 [} t L}
L omemovevew |) | i
t 1 [} +)
[l] GeBIUMOverview i] [l
i e ' ' !
) eviose { i | :
:: diaplayed] 1 1]
] and) 1 ' 1
1 props [i 1 1
1 aoverview] i 1)
) number] t 1 1
) QOI0VEIvidw 1 1)
i H getovendee | 1 !
1 e — 1 1 |
)] new 1] i
] T T -] 1
[1 1 -’ |
: petDaraBlockAsByts : H ’:
i : ! GetOataBlackAsByts |
1])

[[: | U g™
4 the datablock |
Figure 4. Internal pipeline creation

4. Application

We developed a simple image processing application to
handle large image with the proposed grid coverage and grid
coverage processor that can construct pipelines. This
application can display very large images, the size of which
is up to several gigabytes, at any zoom ratio and pan them.
Also, It performs image processing, such as filtering, image
enhancement and band operation, and shows immediately
processed result images.

In case that a user wants to perform average filtering and
band ratioing sequentially on a very large image and look
over the result image on the screen, the developed
application program creates a pipeline, as shown in Figure 5,
with grid coverages, a grid coverage exchange and grid
coverage processors by user’s commands. Notice that any
image processing is not performed until the result image is
displayed on the screen. When the result image is about to
be displayed, one of overviews is selected according to the
current zoom ratio. The result block of data is fetched and
displayed through the pipeline in which the selected
overview is contained. Thus, the size of data block to be

processed is only related with the size of display window

regardless that whole image or a part of image is displayed.
For example, although the size of a raster data file is up to
several gigabytes, the amount of data to be loaded on
memory and processed is only several megabytes when the

size of a viewer is 1024 x 768.

pipeline —
pipeline of.
overvierw!
pipeline of
overvierw?2

Grid Coverage 3
{Band Ratioing)

v

Viewer

getOverview
getDataBlock

Grid Coverage 2
(Mean Filtering)

Grid Coverage 1

Figure 5. An example of a pipeline

Viewer

getOverview|
getDataBlog

Grid Coverage 3
(Band Ratioing)

Grid Coverage4
(Edge Detector)

Grid Coverage Processor
Grid Coverage 2
{Mean Filtering)

Grid Coverage 1

Figure 6. A branched pipeline

One of characteristics of pipeline method, that it does not
create intermediate results, is widely used to develop
applications for large datasets from undo/redo operation to

visual programming. In Figure 5, If you want to remove

band ratioing operation from the constructed pipeline and to
add edge detection operation into the pipeline, it is very
simply done by creating a new edge detection grid coverage
object, the source of which is grid coverage 2. The result
image is fetched through the branch of the pipeline by
requesting processed data to the new grid coverage, as
shown in figure 6. This process of creating a branch pipeline
is similar to construction of data flow model in visual
programming. Thus, these grid coverages can be used for

developing a visual programming tool.

5. Conclusion

The way to embody grid coverage and grid coverage
processor, which can construct pipelines, has been explained.
The pipeline constructed by grid coverages has internal
pipelines that have different resolution and provides the way
of access to very large datasets efficiently. The practical
usefulness of the grid coverage and the grid coverage
processor has been proven by applying them to develop an

image processing software for very large images

6. References

[1] Earth Resource Website, Interactive Image Procesing
using Algorithms, http://ermapper.com

[2] Owen, M.J, Lui, AK, Lo, EH.S, Grigg, MW, The

design and implementation of a progressive on-demand
image dissemination system for very large images,
Computer Science Conference 2001, ACSC2001.
Proceeding 24th Australia, 148-155, 2001

[3] OpenGIS Consortium Technical Committee, The
OpenGIS Guide, 1998

[4] OpenGIS Consortium, OpenGIS Implementation
Specification : Grid Coverage, Revision 1.0, 2001

- 73

