Design of Moving Objects Server for Location Based Services

Dae-Soo Cho, Kyoung-Wook Min, Jong-Hun Lee

Spatial Information Technology Center, ETRI

161 Gajeong-dong, Yuseong-gu, Daejeon, 305-600 Korea

TEL : +82-42-860-6676

FAX : +82-42-860-4844

E-mail : { junest, kwmin92, jong } @etri.re.kr

ABSTRACT

Recently, location based services, which make use of location information of moving objects, have obtained

increasingly high attention. The moving objects are time-evolving spatial objects, that is, their locations are

dynamically changed as time varies. Generally, GIS server stores and manages the spatial objects, of which

locations are rarely changed. The traditional GIS server, however, has a difficulty to manage the moving objects,

due to the fact of locations being frequently changed and the trajectory information (past locations of moving

objects) being managed.

In this paper, we have designed a moving object server, which stores and manages the locations in order to

support various location based services. The moving object server is composed of a location acquisition component,

a location storage component, and a location query component. The contribution of this paper is that we integrate

the each work for location acquisition, storage, and query into a moving objects server.

Keywords : Moving Objects, Location-based Services

1. INTRODUCTION

Recently, various types of location-based services
have obtained increasingly high attention according to
the extensive spread of mobile handset, which is capable
of accessing wireless internet, and the development of
location determination technology, that is represented by

GPS (Global Positioning System). Location-based

services are related the moving objects which change
their locations through time. Therefore, to provide
location-based services efficiently, it is required that an
efficient system which could acquire, store, and query
the large number of locations. The time-evolving
locations of moving objects are not efficiently managed

by existing commercial Database Management System

- 157 —

(DBMS) as well as Geographic Information System
(GIS). The reason is that there is a critical set of
capabilities that are needed by moving objects database
applications[8], such as location-based services, and are
lacking in existing DBMS and GIS. The needed
capabilities are location data model for moving objects,
query language for moving objects, location index for

moving objects, and so on.

Previous works for moving objects can be classified
into two main groups; works related to location data
models and query languages[1,5,8,9] and works related
to indexing locations[3,4,6,7,12]. These works, also, can
be classified by works for current and future
locations{1,4,8,12] and works for trajectories (past
locations) of moving objects[3,5,6,7,9]. Other type of
previous works to is related to generate synthetic
data[2,11,13]. Location data generator, which is capable
of simulating real-world moving objects, are needed

because it is not possible to obtain real datasets, either

they do not exist or they are not accessible.

The purpose of this paper is to design the overall
architecture of a Location Information Management
System (LIMS) which is applicable to the real-world
applications. We have integrated various kinds of works
related to moving objects into the LIMS. The rest of the
paper is organized as follows: In Section 2 we discuss
the overall architecture of LIMS. The systems consist of
three sub-systems, and these are explained in Section 3
to 5 respectively. Finally, Section 6 concludes by giving

directions for future work.

2. ARCHITECTURE OF LIMS

The Location Information Management System
(LIMS) devised in this paper is depicted by Figure 1. It is
composed of three sub-systems, Location Acquisition
Subsystem (LAS), Location Store Subsystem (LSS), and

Location Query Subsystem (LQS).

Location Acquisition Location Query
(LAS) (LQs)
Y
Monitoring GU! Query GUI
 —
/S
Query Language
N —
S
Acquisiton Policy Moving Object Model
-~
report location query
3D-Rtree I
HR-Rtree I
Buffer Manager
STR-Rtree J

A
/,7 FILE J
—{

Database J

\Bistributed DatabaseJ

Figure 1 Architecture of Location Information

Index Manager

Storage Manager

I

Location Storage
(LSS)

Management System

® Location Acquisition Subsystem (LAS):
According to the location acquisition policies, LAS
acquire the current location of moving objects and
report it into the LSS. The policies determine when
LAS acquires the location of a moving object and
how many threads LAS uses to acquire the

locations of all objects.

- 158 ~

®] ocation Store Subsystem (LSS):
Location information that is reported from LAS is
stored location indexes and location stores through

the memory buffer.

® Location Query Subsystem (LQS):
LQS executes the location query based on a moving
object model newly defined in this paper. It defines
data structure and operations to represent the

moving objects.

3. LOCATION ACQUISITION SUBSYSTEM

LAS takes charge role that acquire the locations of

moving objects and is composed as following.

® Monitoring GUI: It could monitor location

information of each moving object.

® Data Generator: It could generate the synthetic data.
Because it is very difficult to obtain the real
datasets of moving objects, we use GSTD[2,11]
algorithm and City Simulator[13] to generate

synthetic datasets.

® Acquisition Policy: It could maintain the location

acquisition policies.

The purpose of location acquisition policies is to
minimize the communication cost to acquire locations of
all of the moving objects. The basic concept of each
policy is as follows. We could estimate the amount of

future location changes approximately by analyzing past

locations. Therefore, we could determine that the
location acquisition interval is inversely proportional to
the amount of future location changes. For example, if
the amount of location change of a moving object gets
larger, then the location acquisition interval is shortened.
Consequently, if the locations of moving objects do not
frequently changed, we could diminish the number of

request to acquire the location.

4. LOCATION STORE SUBSYSTEM

LSS is composed of buffer manager, index manager,
and storage manager. The location information reported
from LAS is temporarily stored memory buffer which is
maintained by buffer manager, and then they are
permanently stored by index manager and storage

manager.

4.1. BUFFER MANAGER

Memory buffer stores locations of a moving object
into MORow object. MORow object depicted in Figure 2
is composed of MOID (Moving Object IDentifier),
Length (the number of locations stored in it), MBR
(Minimum Bounding Rectangle of the locations), From
(time that first location in it is acquired) and 7o (time that
last location in it is acquired). The MaxLocation means
the maximum number of locations stored in a MORow
object. If the Length of a MORow Object is equal to the
MaxLocation, then all of the locations in the MORow
object are transferred to storage manager in order to store

permanently.

— 159 -

MORow

[MOID [rength | MBR | From | To |

L Location(X; Y, ‘Error, Time)

Location(X; Y, Error, Time)

Location(X. ¥, Error; Time)

MaxLocation
Location{X, Y, Error, Time)

I Location(X, Y, Error, Time) I

Figure 2 Structure of MORow

Figure 3 shows the structure of memory buffer
which is composed of a set of MORow objects. Each
MORow object represents a trajectory of a moving object
from From time to To time. As the figure indicates, there
is a B-tree for indexing MOIDs of MORow objects. The
buffer therefore, finds

manager, efficiently a

corresponding MORow object by using MOID.

Memory Buffer

MOID
MOID
MOID ——> MOID
B-tree MOID
MOID

| moD I

MORow

Figure 3 Structure of Memory Buffer

4.2. INDEX MANAGER

According to the previous works, there are three
kinds of location indexes for moving objects. The index
manger designed in this paper maintains two indexes at
the same time. One belongs to current location indexes,

and the other is to past location indexes.

® Current Location Indexes: The indexes[4,12] of this
type take only current locations of continuously
moving objects into consideration. And current
locations are also used for anticipating future
locations of moving objects. These indexes should
have capabilities to process frequently updates of

numerous moving objects.

® Past Location Indexes for time interval (or time
point) queries: The indexes, such as 3DR-tree[7]
and HR-tree[6], have a special purpose of efficient
processing of a time interval (or time point) queries

for the current and past locations.

® Past Location Indexes for trajectory queries: The
indexes, such as STR-tree[3] and TB-tree[3], have a
special purpose of efficient processing of a

trajectory queries for the past locations.

4.3. STORAGE MANAGER

Location information of moving objects is
permanently stored into various types of storages by
storage manager. There are three kinds of storages in this

paper; files, databases, and distributed databases.

Each storage has the unit of storing locations. For
example, a file is a storing unit of files storage, and a
table is a unit of databases storage. The storage manager
should determine amount of locations stored into a
storing unit, because past locations of moving objects are

infinitely increased through time. In this paper, we define

- 160 —

a package, and store it into a storing unit. Figure 4 shows
a package which is composed of a set of trajectory
during a packing interval. Each package is identified by

storage number which represents the list of MOIDs and

WHERE clauses are executed by traditional databases
which store an attribute data of all of the moving objects.
And LOS executes MOSELECT and MOWHERE

clauses and integrates the result of whole query.

From time of it.

Package = File or Table

SELECT
MOSELECT
FROM
WHERE
MOWHERE

moselect_list

mowhere_string

function

function_name

parameter_list

parameter

select_target_list
moselect_target_list
table_list
where_string
mowhere_string

= function
| function , moselect list

= function
| function and mowhere_string
| not (mowhere_string)

= function_name (parameter_list)

= overlaps | snapshotbyvalidtime | slicebyvalidtime | ...

= parameter
| parameter, parameter_list
= function | object | const

From To iFrom To coe
Locations | Locations s MOID
List
A Locations | Locations (XX} for
Storeage
i Locations | Locations | *e* 001 (ID)
MOID 1 Locations i Locations | Locations see
: !
o0 :-.o :ooo se L)
H H
. .
<
Package interval
Figure 4 Package

5. LOCATION QUERY SUBSYSTEM

LQS should define location data model and location
query language for the moving objects. The location data
model means data structure and operations for the
moving objects. In this paper, we revise the previous
works[5,9], and newly define a data model, which is
of a lot of classes such as MPoint,

composed

MLineSegment, and MPolygon.

We also revise the SQL syntax to support moving
object. That is, we append the MOSELECT and
MOWHERE clause to previous SQL syntax. Figure 5
shows the SQL syntax for moving objects. This extended

SQL is processed as follows. SELECT, FROM, and

object = point(} | line() | area() | period() | time() | mosmbr()

| string(geometry_column_name}) | ...

Figure 5 Query Language for Moving Objects

6. CONCLUSIONS

In this paper, we have designed the location
information management system for a large number of
moving objects. We integrated various kinds of works
related to moving objects as well as newly proposed a
location data model, a location query language, and a
method for storing moving objects. The system we
proposed supports a diverse set of location acquisition
policies, location indexes and location storages.
Therefore, it is expected to be applied into various kinds
of location based services. As future work, we should

implement the proposed system, and develop algorithms

to enhance the performance of location query processing.

- 161 —

REFERENCES

[t

(2]

B3]

(4]

[5]

(6]

[7]

A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain,
and Son Dao, “Modeling and Querying Moving

Objects,” ICDE, pp.422-432, 1997

Dieter Pfoser and Yannis Theodoridis,
“Generating Semantics-Based Trajectories of
Moving Objects,” International Workshop on
Geo-Based

Emerging Technologies for

Applications, Ascona, Switzerland, 2000

Dieter Pfoser, Christian S. Jensen, and Yannis

Theodoridis, “Novel Approaches

in Query

Processing for Moving Object Trajectories,’

VLDB 2000, 395-406

George Kollios, Dimitrios Gunopulos, and Vassilis
J. Tsotras, “On Indexing Mobile Objects,” ACM
Symp. on Principles of Database Systems, pp261-

272, 1999

Luca Forlizzi, Ralf H. Giiting, Enrico Nardelli,
Markus Schneider, “A Data Model and Data
Structures for Moving Objects Databases,” Proc.
ACM SIGMOD Conf. (Dallas, Texas), pp. 319-

330, May 2000.

M. A. Nascimento and J. R. O. Silva, “Towards

historical R-trees,” ACM SAC, 1998

Michalis Vazirgiannis, Yannis Theodoridis, and

Timos K. Sellis, “Spatio-Temporal Composition

(8]

9]

(10]

(11]

[12]

[13]

- 162 -

and Indexing for Large Multimedia Applications,”

Multimedia Systems 6(4), 284-298 (1998)

Ouri Wolfson, Bo Xu, Sam Chamberlain, and
Liqin Jiang, “Moving Objects Databases: Issues

and Solutions,” SSDBM 1998, 111-122

R.H. Giiting, M.H. Béhlen, M. Erwig, C.S. Jensen,

N.A. Lorentzos, M. Schneider, and M.
Vazirgiannis, “A Foundation for Representing and
Querying Moving Objects,” FemnUniversitit
Hagen, Informatik-Report 238, September 1998,
ACM Transactions on Database Systems, 25(1):1-

42,2000

Y. Tao and D. Papadias, “MV3R-Tree: A Spatio-
Temporal Access Method for Timestamp and

Interval Queries,” VLDB, 2001

Yannis Theodoridis, Jefferson R. O. Silva and
Mario A. Naschimento, “On the Generation of
Spatiotemporal Datasets,” CHOROCHRONOS
Technical Report CH-99-01, Proceedings of the
16th Int’l Symposium on Spatial Databases (SSD),

1999

Zhexuan Song 1 and Nick Roussopoulos,
“Hashing Moving Objects,” MDM 2001, LNCS

1987, pp. 161-17, 2001

http://www.alphaworks.ibm.com/tech/citysimulato

T

