Isolation of Polyhydroxylated Alkaloids from Silkworms (Bombyx mori L.) and Enzyme Inhibition Test

Hyun-Su Kim², Hyun-Jung Ko², Jae Yeon Lee¹, Kyo Yeol Hwang¹, Jin-Won Kim³, Heui-Sam Lee³, Iksoo Kim³, Kang-Sun Ryu³, and Su Il Seong²

¹Biotopia Co., Ltd. Hwasung city, Kyounggido 445-743, Korea, ²Department of Biology, The University of Suwon, Suwon P.O. Box 77, Kyounggido 440-600, Korea and ³Department of Sericulture and Entomology, NIAST, RDA Suwon 441-100

It is well known that isolated polyhydroxylated alkaloids from Mulberry trees and silkworms inhibit to α -glucosidase, β -glucosidase, β -glucosidase activity. HS-58 compound was purified among the 7 types polyhydroxylated alkaloids from the silkworms (*Bombyx mori* L.) used by amberlyst 15, dowex 1X2-100, amberite CG-50 ion-exchange resin and sephadex C-25 column chromatography.

1-Deoxynojirimycin has potential inhibition activity to α -glucosidase but weak to β -glucosidase. New isolated HS-58 compound which was weak inhibition to α -glucosidase, showed very strong inhibition activity to β -glucosidase than 1-deoxynojirimycin.

Futhermore, almost isolated polyhydroxylated alkaloids including HS-58 compound showed comparatively high inhibition activity to maltase extract from the porcine intestine.