NAVER : PC 22&H 7|t 471383 7d 44 R 74

MRRED, 18F0, 20 G, dadt AHE
@A T, |
I e

NAVER : Design and Implementation of Networked Virtual
Environments Based on PC Cluster

ChangHoon Park®, HeeDong Ko® Changseok Cho®, Hee-Kap Ahn?
Yo-Sub Han® and TaiYun Kim®
*Korea Institute of Science and Technology(KIST),

’Korea University

Abstract

The NAVER is based on a cluster of low-cost personal computers. The goal of
NAVER is to provide flexible, extensible, scalable and re-configurable framework for the
diverse virtual environments especially for Gamsung research experiments. Personal
computers are divided into three servers are according to their specific functions: Render
Server, Device Server and Control Server. While Device Server contains external modules
requiring event-based communication for the integration, Control Server contains external
modules requiring synchronous communication every frame. And, the Render Server consists
of 5 managers: Scenario Manager, Event Manger, Command Manager, Interaction Manager
and Sync Manager. In this paper, we discuss NAVER as effective distributed system and
its application to Gamsung experiment.

Keywords: Virtual Reality, PC-cluster, Re-configurable, Extensible

1. Introducti a familiar and ubiquitous name for the area
- Antroduction of computing which takes the user into a

Virtual Reality (VR) has recently become three dimensional virtual space. It is a

—221—

popular medium for a number of application
areas such as military, education, medicine,
and entertainment industry [1].

Many VR applications will migrate from
workstations to personal computers (PCs). To
satisfy the real time interaction, system must
maintain a high visual frame rate and
maximize the responsiveness to user inputs.
To generate a virtual space, special-purpose
visual workstations have been used. With the
computation
they

becoming a viable alternative to expensive

recent increases in power

graphics performance of PCs, are
workstations for VR applications [2].
In this paper, we present a
framework named NAVER based on a PC
cluster. Our framework aims to facilitate the
the

NAVER, component nodes are classified into

new

development of VR applications. In

three categories according to its main
function: Render Server, Device Server and
Render Server provides

Control Server.

real-time 3D graphics rendering. Device
Server manages devices or applications which
are tightly coupled with a virtual space
In Control
that
loosely coupled with a virtual space are
handled. NAVER is
flexible,

framework for VR applications. The following

generated by Render Server.

Server, devices or applications are
designed to provide
extensible, scalable re-configurable
are considered:

First, the NAVER is

extensible and reconfigurable by introducing

structure of

the concept of external modules. External

modules represent various devices or
applications that interact with NAVER kernel.
In the NAVER, external modules are

divided into two groups by the interaction

characteristic with the virtual space: one

requires
the

requires the streaming communication like

interaction characteristic non-

periodic event communication, other
navigation or manipulation control input. For
the efficient management of them, the former
external module are included in the Control
Server, while the latter external modules are
handled by the Device Server.

Second, the NAVER enables to specify the
configuration of the system and the virtual
space by s The
describes the object and structure of the 3D

virtual environment.

script file. script file

In this paper, a new framework based on
low-cost PCs
supporting the function of high-end visual

cluster is proposed with
workstation. And, this framework enables the
virtual
generated by

and operation of
which is
integrating a 3D virtual space with external

specification
environment

modules on different hosts.

2. Related Work

This introduces a number of

current virtual reality systems, and outlines

section

their basic design: VR Juggler from Iowa
State University [4], and DIVERSE from
Virginia Tech University [5].

The
maximize flexibility, portability, extensibility,

VR Juggler project’s goal is to

and maintainability of both applications and
the library itself. The VR Juggler kernel is
micro—-kernel architecture. The kernel provides
a mechanism for simpler, initial development
that added,
reconfigured and/or removed during run-time.

of applications can be
In addition, VR Juggler provides a "virtual
platform” for application development. This

virtual platform concept extends throughout

—222—

the VR Juggler design, including areas like
VR
Juggler supports several other kinds of input
data. Each
proxy interface that can be accessed by the
the
protected from dealing with the complexities

graphics and input device handling.

input type has an associated
application is

application. Similarly,

of displays.
DIVERSE is a modular collection of
complementary software packages that were

facilitate the
operator-in-loop

developed to creating of
distributed simulations.
DIVERSE consists of two packages. The
DIVERSE Toolkit (DTK) provides an access
to local and networked interaction devices,
both real and simulated.

support for run-time swapping of I/O devices

It also provides
and/or emulators, enabling the creating of
device independent application. The DIVERSE
graphics interface for Performer (dgiPf) adds
immersive and/or non-immersive graphics to
OpenGL

scene graph-based

simulations by augmenting
a high-level
graphic APIL

The purpose of NAVER is very similar to
that of the system. NAVER,

however, is designed as a distributed system

Performer,

previous

for extensibility, and has its own scripting
language for people who are not expert in

programming to develop various contents.

3. NAVER

In this section, we describe the main
of NAVER kernel:
Manager, Command Manager, Event Manager,

components Scenario

Interaction Manager, and Sync Manager.
The the

integration of three servers described in the

kernel aims to facilitate

pervious section as well as dynamic

management of the virtual space.

A
Render Server

| Scenaiio | Event g
' Manager Manager
* Command Manager

interaction

oS Manager :

Conrol Server

Device Server

i

Figure 1. NAVER Kernel

3.1 Scenario Manager

The main function of the Scenario
Manager is to interpret and process the script
for presentation and interaction. The script
enables the author to describe both static and
In this

paper, virtual environments are defined by 3D

dynamic of virtual environments.

virtual space and multi-modal interface of
three servers.

Script File
Seclion Saction
Declaration Operation
I I 1+ T1 +
System Scene |-OM€9E_ | operation

Figure 2. Structure of the script file

Figure 2 shows the structure of the
script. The script consists of the following
major functional components: declaration and
operation. The declaration contains nodes
which describe information to initialize virtual
environments. There are two types of node
named System and Scene. The node is the

basic building block of the script. Nodes are

—223—

abstraction of various concepts and objects
for physical system and 3D virtual world. In
the operation, there is the Operation node to
specify dynamic control of virtual
environment.

A script contains one System node which
specifies configuration of the Render Server,
the Device Server and the Control Server.
Information such as Internet address and port
described to support
And,

System node is a static node which cannot

number is

communication among these servers.

be modified at rum-time.

Scene

name
op_name

=

1+ 1+

Channel Environmert Model Animation
view_pos tod name name
fov sky_color node _tye Nim_type
near_tir fog_color path path
lod_scale fog_nearfar fle fle
stereo light_pos key
stereo_offset fight_color key_value

Figure 3. Scene Specification

The Scene node is used to specify a 3D
virtual world. Scene is a grouping node
which includes a list of nodes. Scene node
includes Channel, Environment, Model and
Animation which have their private function.
Channel node has fields to describe a view of
a scene like view position, viewing frustum,
field-of-view and so on. Environment node
provide a way to simulate atmospheric effects
including time-of-day, the color of sky, light
position and more. Model node specifies meta
data to be

included in the scene. And, animation node is

information about 3D model

designed for key framed animation. Therefore,
virtual worlds can be specified by setting

their values.
The
controlling the Scene node as time pass. A

Operation node can be wused for

script contains one or more scene nodes. So,
a Scene node can be identified by its name
filed and their sequential relation can be
described by means of next field which
specifies the name of next Scene node. And,
each scene node needs one operation node.
So,
number of operation nodes must be same.

the number of scene nodes and the

The op_name field of Scene node specifies
the name of corresponding Operation node.
Operation node has one or more Action
allow the
concept of time and contains one or more
The
requests the Command Manager to process

node whose fields specifying

Command node. Scenario Manager
the command when the time specification of

Action node is set to current time.

3.2 Command Manager

The
command required by the Scenario Manager
and the Event Manager. Table 1 describes

Command Manager processes the

the command which can be processed by the

Command Manager.

Table 1. Command Classification

gt » node].[fxeld]

Set value String
data String
Send target [nodel.[field]
value String
device name | String
Control activate Boolean
target [nodel.[field]
First, the "Set” command is used to

control the scene which represents a virtual
world. By setting the field of node consisting
of a scene, the virtual world can be updated.

—224—

The target argument means the destination.
And, the data includes the list of values to
be used in the requested duration, while the
value contains a single value for the filed.
For example, we can update the background
color of a virtual space at time 10 by
describing as following.

Action {
at 10.0
Set |
target Channel.sky_color

value "0.2 0.2 1.0"

)

Second, the "Send” command transmits an
event through the Event Manger in order to
control the device which is handled by the
Control Server. And, the field value of any
node can be delivered to the Control Server.
For example, we can send an event defined
to tum on the projector connected on the
Control Server.

Third, the "Control” command activates or
deactivates the device on the Device Server
through the Interaction Manager and connects
the user input to the field of any node every
frame for the navigation or the manipulation.
For example, following script allows the user
navigate virtual worlds from time 30 using
the joystick.

Action {
at 30.0
Control {
device_name "joystick”
activate on
target Channel.view_pos
}
}

3.3 Event Manager

The handles the
transmission of events to and from the
Control
asynchronous message passing. The Event

Event Manager

Server, which is based on
Manager allows the Render Server sent an
event in order to control the peripheral device
managed by the Control Server. In addition,
the Control Server is allowed to transmit an
event including the command to the Render
For

example, the Render Server can turn on the

Server through the Event Manager.

projector of the control server. And, a user
on the Control Server is allowed to control
the light of a 3D virtual space through GUI
component of the interface of applications.

In the the

Manager processes receiving events in the

Render Server, Command
queue every frame. It should be noted that
the amount of events is closely related with
the real-time The available

network bandwidth and the size of message

performance.

must be considered. In general, events occur
less frequently than frame rate.

3.4 Interaction Manager

The Interaction Manager connects the user
input from the Device Server to the scene
graph which is an abstract data structure
representing a virtual space in the Render
Server. The Interaction Manager allows the
real-time interaction such as navigation or

manipulation in the virtual space. For
example, a user on the Device Server can
navigate a virtual space using a

force-feedback joystick, which vibrates when
collision occurs.

For the natural interaction, the Interaction
the
communication with the Device Server by

Manager provides synchronous

—225—

means of polling which is the query of the
device status. In the Render Server, Polling is
transmitted to the Device Server every frame.
At this time, information about collision or
terrain following can be transmitted to the
Control Server for display devices or complex
dynamic calculation. Then the Device Server
replies to the recent status of the device.
Comparing with the Event Manager, a
message exchange occurs continuously for
the interaction.

3.5 Sync Manager

The Sync Manager provides synchronous
multiple channels by means of a cluster of
PCs. Multiple
graphics displays which requires more than

channels are needed for
one image such as Head-Mounted-Display,
CAVE
software-based
Communication (IPC) technique into multiple

and SO on. By introducing

real-time Inter Process

Render Servers of a cluster, the Sync
Manager makes synchronous multiple
channels just as if these channels are

managed by a single computer. The Sync
Manager is divided into Sync Master and
Sync Slave.

Eternet

Figure 4. Sync Master and Sync Slave

In Figure 5, our protocol for synchronizing
multiple channels on networked hosts is
described. A cluster consists of a single Sync

Master and zero or more Sync Slaves in the
NAVER. A Sync Master sends Update Sync
Message (USM) to Sync Slaves every frame.
USM contains the change of a scene graph’s
the
Scenario Manager or Event Manager. Then,

state and commands requested by
each Sync Slave swaps its frame buffer and
draws a new frame by reflecting an arrived
USM. After a Sync Slave completes its
process, an Update Acknowledge Message
(UAM) is transmitted to a Sync Master. A
Sync Master waits until it receives the UAM

from all Sync Slave.

syncSlave l syncMaster syncSlave]
n
Frame eudutinguigey o
Swap update sync | Swap updatesync Swap
Buffer Buffer Sutfer
Oraw
Diaw Draw
ate ACK

L B
Frame

...

Figure 5. Protocol for synchronizing
distributed channels

In the proposed protocol, the overall frame
rate depends on the host who has the lowest
frame rate. As the drawing time can be
different each other, it should be considered
for synchronization. In general, 30 Hz frame
rate is required. Under this requirement, one
frame rendering needs about 33ms and the
average transmission time of message is
about 0.1 ms on the Ethernet. Therefore, the
network does not suffer the bottleneck of our

protocol easily. However, as the size of
message increases, the bandwidth will be
exhausted.

4. Implementation

As we mention before, since NAVER is

—226—

based on the PC cluster it can be easily
configured for multi~-channel displays. In
CAVE like display environment, each channel
displays to each wall surrounding the user to
give the actual image according to the
viewpoint of the user.

In this section, we implement CAVE like
system that has 4 screens: 3 walls(left, front,
right) and 1 floor. Each screen is displayed
corresponding a single render server. It is a
regular hexahedson (22M x 22M x 2.2M)
whose frame is made of aluminum that has
the lower permittivity. BARCO projector as
back projection projects three sides of CAVE
system. The other projector as downward
projection projects the bottom of CAVE

system [Fig. 6].

Figure 6. CAVE system

This system is required to consider the
followings in order to be a platform that can
measure various human factors using the
wide field of view for and immersion. First,
it should be able to trace the movement of
the user and redisplay the proper images for
each movement. When redisplaying images,
there might be a -time delay and image
transition occurred by the interaction between
the user and the objects. And these make the
user feel the difference between the actual
world and the virtual world and cause
strain [7]. To
overcome these problems, we make that the

sickness or increase eye

tracking device, Flock of Birds, delivers the

data faster than the refresh rate of the

rendering server and decide the viewing
the wuser position in
let the

1s Dbasically a

frustum according
CAVE
calibration pattemns,

addition, we
which

of 4 screens meet to

system. In

regular grid image,
display all images as one image.

In the virtual space, it is required to give
not only the 3D information that interacts
with examinee but also questionnaire or
additional
requirements, we
board that can deliver the 2D data such as
message or image in the 3D virtual space.

information. To satisfy these

implement the browsing

The browsing board is displayed at the
prefixed position in the window without being
interference with the viewpoint of examinee.
Since the browsing board is transparent, it
displays messages and images on the 3D
virtual space without blocking the scenery to

maintain the user immersion context [Fig. 7].

Perlevrerier

Figure 7. Implementation of the browsing
board

Figure 8 shows the procedure to process
both the browsing board and the external
module in the control server at the same
time. And the external module in the control
server operates with the database that stores
questions for examinee and the answers from
them. The browsing board on the render
server shows examinee the question coming
from the external modules.

—227—

Control Server Renekr Server
Extemal Browsing
Maduie Roard
i *
experimento suvject

Figure 8. Ask using browsing board

The experimenter can control the start of
the external module.
When an examinee has done a questionnaire,
the answer is delivered through the external
module and stored in the database. Therefore,

questionnaire using

the browsing board can be used in both
ways: to give a questionnaire for experiment
as 2D information in 3D virtual space, to
deliver an additional information.

5. Conclusion

We have described NAVER, a flexible,
extensible, scalable re-configurable framework
based on a cluster of low-cost PCs. In the
NAVER, Scenaric Manager the
script file in order to allow the author specify

provides

the definition and operation of the virtual
environment which consists of a virtual space
and external modules. External modules can
run on the remote host and includes various
input/output devices and applications. To
integrate external modules with a virtual
space, we separate them into Device Server
Control

communication characteristics as

and Server according to its
Interaction
Manager and Event Manger respectively. To
support multiple image display channels in
HMD, CAVE and so on, NAVER provides an
unique technique to synchronize multiple

channels that are effective on distributed PC

clusters.

References

—

B. MacIntyre and S. Feiner, "A Distributed
3D Graphics Library”, ACM SIGGRAPH
‘98, pp. 361-370, 1998.

2. K. Watsen and Mike Zyda. "Bamboo- A
Portable System for Dynamically
Extensible, Real-time, Networked, Virtual
Environments”, IEEE Virtual Reality, pp.
252-259, 1998.

3. G. Humphreys and P. Hanrahan. "A
Distributed Graphics System for Large
Tiled Displays”. IEEE Visualization ‘99,
pp.215-223, 1999.

4, John Kelso, Lance E. Arsenault,
"DIVERSE: A Framework for building

and Reconfigurable Device

Virtual

Extensible

Independent Environments”,
Technical Paper.

5. Allen Bierbaum, "VR Juggler: A Virtual
Platform For Virtual Reality Application
Development”. IEEE Virtual Reality, pp.
89-96, 2001.

6. DeFanti T. A, "Surround-screen

virtual reality the

design and implementation of the CAVE",

ACM SIGGRAPH 93, pp. 135-142, 1993.

projection—based

