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Concept Optimization and Folded Plate Theory
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ABSTRACT

Almost all buildings/infrastructures made of composite materials are fabricated without proper design.
Unlike airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or
100-meter long bridges. People try to build 100-story buildings or several thousand meter long bridges. In
order to realize “composites in construction”, the following subjects must be studied in detail, for his design.
Concept optimization, Simple method of analysis, Folded plate theory, Size effects in failure, and Critical
frequency. Unlike the design procedure with conventional materials, his design should include material
design, selection of manufacturing methods, and quality control methods, in addition to the fabrication
method. In this paper, concept optimization and folded plate theory are presented for practicing engineers.

1. Introduction

The educational background of the majority of the
construction engineers is the bachelor’s degree. Even the
engineers with higher degrees have very much difficulty
in design/ analysis, with acceptable accuracy, of
buildings/infrastructures made of, even, conventional
materials.  Buildings/bridges by the reinforced
concrete/steel are three-dimensional structures made of
composite materials, such as cement, steel bars, etc.

However, the engineers can design/analyze such
structures by considering them made of one-dimensional
beams/columns. But, they are protected by codes and
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specifications. Almost all buildings/infrastructures made
of composite materials are fabricated without proper
design. Unlike airplane or automobile parts, prototype
test is impossible. One cannot destroy 10 story buildings
or 100-meter long bridges. People try to build 100-story
building or several thousand meter long bridges. In this
paper, two subjects out of several other subjects, namely,
concept optimization and folded plate theory are briefly
explained.

2. Concept Optimization

Modern materials engineering has produced numerous
new structural materials, and the science of mathematical
calculation and others related with structural analysis,
and construction have reached near its zenith, It is
necessary to develop or to redefine the new concept (or
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concepts) suitable for new materials. The senior author

wished to call this the fifth basic concept.of structures [1].

One calls it an advanced composite when controlled
placement of reinforcements with optimum shape,
amount, and direction, according to “accurate” analysis
result, is made. This indicates that a composite material
must be treated as a structure.

Very large portion of civil structures can be analyzed
by considering them as frameworks of one-dimensional
elements. Composite materials are, generally, strong in
tension. When an element is designed based on tension
load, it will have thin section, which is weak against any
loading type other than in-plane on—axis tension load.
This requires the section modulus increase by means of
employing thin walled sections. The thin panels of such

section are weak against the loads normal to these panels.

The longitudinal stringers are added between transverse
diaphragms to take care of such loads. The diaphragms
transmit the loads from stringers to the walls of the
beams by means of in-plane shear.

Even when the frames are analyzed as one-
dimensional beams and columns, these one-dimensional
elements are three dimensional structures made of thin
walls, which are called as folded plates (shells). Thus,
the analysis of structures made of composite materials,
becomes that of folded plates, both prismatic or non-
prismatic.

‘A’ Typical Bridge Frame
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Total Section : Behaves like a Folded Plate Shell
Figure 1. Typical Bridge or Building Frame
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Figure 2. Prismatic Folded Plate Structures
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3. Folded Plate Theory

Any curved surface can be considered as
continuations of certain types of triangular plates.
Therefore, the theory of non-prismatic folded plates can
be applied to any type of shell structures [1,2,3,4]. Any
three-dimensional structural configuration can be
approximately represented with good accuracy by non-
prismatic folded plates, which is composed of sectorial
plates. Any sectorial plate problem in and normal to the
plane forces can be solved by the finite difference
method, finite element method and others. The problem
then reduces to that of boundaries of two adjoining
sectors. Each sector may be inclined. Fig. 3 and Fig. 4
show typical both upper and lower fold lines.

1. When n is at an upper fold line :

E‘(n.m»l) ==N, ) sin (D(n.n+l) + V/(n.nu) cos (D(n.n+l) ,
Fy(n.nﬂ) == N/(n,ml) cos (D(n.ml) - V:(n.m) sin q)(n,nﬂ) ,
Fx(n,n-l) = Nl(n‘n—l) sin ®(n.n—l) + Vt(n.n-l) cos d)(n.n—l) ,
Fy(n,n-l) = Nl(n.n—l) cos q)(n.n-l) + V:(n.n—l) sin q)(n,n-n) , (D)
Dx(n,nﬂ) = Vi sin q)(n,nﬂ) t Wy Cosq)(n,nu) ,
Dy(n.n+l) = Vi cos(b(n,nu) “Win sin ¢(n.n+l) ,
Dory = Vi SIND oy + W,y COSD ,
Dy(n.n-l) ==V (yp-p) COS q)(n.n-l) W,y sin (D(n.n—l)

where. N,=0,h
2. When n is at a lower fold line :

Fx(n.ul) = Nl(n,m—l) sin d)(n.nﬂ) - V:(n,m) cos (D(n.nu)
E
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Dx(n.nH) = Vigusy S q)(n.m) + Wity cos®(n,n+l) ,
Dy(n.nﬂ) F = Vipnsyy €08 d)(n,ru-l) + Wiy ey S D ()
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Figure 3. Notations and Sign Conventions at the
Upper Fold Lines
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Figure 4. Notations and Sign Conventions at the
Lower Fold Line

The types of the joint compatibility and joint
equilibrium conditions depend on which dependent
variables are chosen. If the transverse bending moment,
M,, and the three displacement components, u, v, and w,
are taken as unknowns, it is necessary to satisfy the slope
compatibility condition and the three force equilibrium
conditions at each fold as follows.

Sl(n n+1) "Sun n+1) =0,
Foyimrty F Founyy =0
F +F =0
x(n,n+1) x(nn-1) = s (3)
Finmsty ¥ Fypny =0
2>

where F =1 ,h=N,

Since these ‘force’ expressions are to be written in
terms of displacements, the compatibility conditions are
automatically satisfied. At each fold line, these
conditions must be satisfied when the governing
differential equations are integrated. For anisotropic
materials three force equilibrium equations in terms of
three displacement components, u, v, w, when the
transverse sheer deformations are negligible, are as
follows.

o'u 'u ?*u a'v 2%y
Ay _axl + 24, axdy + Ag —By’ + Ay —5 Fw (4, + A“) 2 By_’
3 3
w o'w 6
-8, 2% 35, 2 (B, +28) 2 Z—st—‘f=0
ox o0x*dy Oxdy oy )
9’u u 9% d*v 3’y
A“‘_ax’ +(A,+ 4 “_ay’ +A“—ax—’+“"a 2 +Azza 5
'w 'w 3w o'w
-B, LY (B, +2B,)- LY 38, 2 _p, LY ¢
16 axj 12 66 axzay 26 axayz 22 ay] (5)
ES 2 2 2
D" = ¥ 4D, ,ay+z(1),, +2D, )ax’ay’ 4Du€x#+0n@7w-5"ax—l:—38wﬁ
- {8y "ZBn)a‘a),z Bn ay, 5..——-(3‘; +25..) -3 uW'Bn Eg T =qny) (6)

where Ay, Bjj and Dy are stlffnesses.

Many laminates with certain orientations have
decreasing values of By, Djs and Dy as the number of
laminae increases. In such cases the following three
equations can be used instead of the above three

equations{8].
o’u oy 0%u
Ay —7 22 + (4, + Ass) + Ag 7= X
3ty 9%u alv
A +(A'2+A“)Bx3y An~ay—z—- Y (8)
D, o'w +2(D +2D, ) +D aA =q(x,y)
P 12 66 zayz 2 By s ©

Any coordinate system can be used depending on
the geometry of the structure. For non-prismatic folded
plate structures, one of the useful methods is to use the
polar coordinates. In such case, above three equations are
transformed to the following equations.

6’u i, o ou (l—v)a u (3—V)av+(l+v)6’v _ (l—v’)K (10)
ror r2 2r? 60 238 2rdrof E "
(I v) f_v v v, . +(3—v)[5u">(1+v)6’u_ (l-v’)K
2 ot ror ot rIBG2 2r*08 200rdf E ‘ (11)
8 18 18 d'w aw
e
or’ ror rog° or rar 30

D (12
If the finite difference method is used to mte(graze
the differential equations, some elaborate work is
necessary. A very high degree of accuracy can be
obtained by this method {3,4]. With the method of
analysis as mentioned above available the problem is
reduced to solving a plate, either prismatic or non-
prismatic with arbitrary elastic boundary conditions.
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4. Numerical Example

4.1 Non-Prismatic Folded Plates
As an example, the structure in Fig.5 is considered.

Figure 5. Perspective View of the Shell
This shell is under symmetric vertical load. Finite
difference method is used for analysis. After very
lengthy calculation, the stresses are obtained, and the
general configuration of important stresses are as given
in Fig.6 and Fig.7.
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Figure 6. O, Stresses at the Fold Line
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Figure 7. In-plane Stress Distribution

4.2 Prismatic Folded Plates
The structure considered is given in Fig. 8. The
stiffnesses are as given in Table 1. Finite difference
method is used. The results by folded plate theory and
beam theory are compared in Table 2.

¥y

[V .. W
Figure 8. Composite Laminated Folded Plate
Structure

Table 1. Stiffnesses of Laminated Plate
[ Extensional stiffness | Flexural stiffness |

(N/r) N - m)
A, | 506091648.8697 | D, |56824.503261
A,, | 7107218885885 | D,,|57250.822503
A, | 3627684634065 | Dy, |42103.137633
Ag | 3763454298028 | Dys|43489.119558

Table 2. Deflection at the Center of Lower Fold
Line(x=L/2) by Beam Theory and Folded

Plate Theory

spect

io 2 1] 3 4 5
Fglli‘;d 479 | 2.31E{ 2.84 | 9.50E{ 2.37
Theory | E 5 | E3 3 | E2
Beam | 6.18 | 3.86E 9.88E] 2.41E-
Theory | B-4 | 5 PoEd 3| 2
R 0.78 | 0.599/0.907 | 0.961] 0.983

Aspect Ratio = L/h
Ratio = Result of Folded Plate Theory
Re sult of Beam Theory

5. Conclusion

In this paper, concept optimization and folded plate
theory are briefly explained in order to help engineers to
design safe and sound, and yet, economical structures.
Unlike airplane or automobile parts, prototype tesis for
buildings and bridges are impossible. Nevertheless,
almost all buildings/infrastructures made of composite
materials are fabricated without proper design.
Design/analysis of such structure is simply too difficult
for most of the engineers.
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