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Elastic Wave Resonance Scattering from a Fluid-filled Cylindrical Cavity
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ABSTRACT

A new method is presented for the isolation of resonances from scattéred waves for elastic wave resonance scattering problems. The
resonance scattering function consisting purely of resonance information is defined. Elastic wave resonance scattering from a water-
filled cylindrical cavity imbedded in an aluminum matrix is numerically analyzed. The classical resonance scattering theory and the
new method compute different magnitudes and phases of the resonances from each partial wave, and therefore, their total resonance
spectra are quite different. The exact 7 - radians phase shifts through the resonance and anti-resonance frequencies show that the
proposed method properly extracts the vibrational resonance information of the scatterer compared to resonance scattering theory.

1. Introduction

In this paper, the concept of the new resonance
formalism, previously developed for acoustic wave
scattering in Ref(1), is extended to elastic wave
scattering that involves mode conversion phenomena.
Elastic wave scattering from a cylindrical water-filled
cavity is numerically analyzed wusing both the
conventional resonance scattering theory (RST) and the
proposed new resonance formalism. The new resonance
formalism computes different magnitudes and phases of
the resonances of each partial wave from previously
published studies [2]. The proposed method generates
physically meaningful behavior of phases compared to
the conventional RST.

2. RESONANCE SCATTERING THEORY
FOR ELASTIC WAVE SCATTERING

As shown in Fig. I, we consider the problem of a plane
elastic wave incident normally on an infinitely long
cylindrical fluid-filled cavity of radius @ which is
aligned with the Z - axis.

A plane P wave with unit magnitude incident along
the X axis can be expressed as a partial wave series,

Pine = €Xpi(k, X — o)

=Y ¢&,i"J,(k,r)cosng, o)
n=0
where k, =@ /c,is the longitudinal wave number,
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¢, is the speed of longitudinal waves in the elastic

medium, 7 is the normal mode number, &,is the

Neumann factor, and J,. is the Bessel function. The

time dependent term is suppressed in the right hand side
of Eq. (1) because the steady state is assumed.

The scattered elastic waves have the following form
of potentials:

. 1
o, = Zanz"A,,H,f )(k,r)cosng, (2a)
n=0
v, = Zgni"B,,H,f')(ksr) sinng, (2b)
n=0
where ks =w/ c, is the transversal wave number,

¢, is the speed of the transverse waves in the elastic

medium, and H,f') is the Hankel function of the first

kind. The incident P wave has created an outgoing shear
wave (S wave) of Eq. (2b), which represents a
phenomenon known as mode conversion. In addition, a
standing compressional wave is excited in the fluid-filled
cavity given by

@, = &,i"E,J, (krr)cosng, 3)
=0

where k ;=0 /e ; is the wave number in the fluid,
and ¢  is the speed of the longitudinal waves in the

fluid. The expansion coefficients A,,B, and E,_ can

be determined from the appropriate boundary conditions.

By applying the displacement and stress equations to
the boundary conditions, we can obtain matrix equations
for the expansion coefficients as follows:

&u &n &u|(A4. hy
g1 8» &xn||B.|=|h]. )
g1 8n &n/\E, hy



Letting
xpskpa, x;=kea, (5)
the matrix elements in Eq. (4) are:

&n :po,(.U (x,),
&n ="Hr51)(x;),
g5 =-x; J,(x,),
g =Qn* —x YH" (x,)-2x,H" (x,),
8y =2n Hil) (x,)+ 2nxJH,§W (x,),
5 =P 1 p )X, (x)),
w=2n(H (x,) - x,HY (x,)),

x, =ka,

8 =x HO(x,) +2x,H" (x,) - 2n*HO (x,)

g1 =0,
h, =~Re[g, ] (for i=123), (6)
p and p, are densities of the elastic medium and

the cavity fluid, respectively.
In the far-field where ¥ >>a,

function f.¥ and [

the individual normal modes f,”” s and f/ s,

respectively, of scattered waves as follows:

2L(P) = prp (@)= ) 2 £,4, cosng,(7a)
J(P)= prs((b) ‘ E £,B, sinng.(7b)

For § wave mcxdence case, sxmllarly we have

Wx‘nc = expi(ksX_wt)

the far-field form

are defined as summations of

=Y &,i"J, (k;r)cosng. ®)
n=0
= ani"CnH,f”(kpr) sinng, (9a)
n=0
=Y ¢,i"D,HY (k,r)cosng, (9b)
n=0
= ¢,i"F,J,(k,r)sinng. (9¢)
n=0
By applying the same boundary conditions, we obtain
my my, my) (C, 4
My, My My | D=9, (10)
my My my) \F, q,
where
my = gy = —8psMyy = &13,My) = Zars
My = =892sMy3 = 8353 = ~ &3y

2 = &3> My = gy, and
g; ==Re[m, ) {(for i=1273).

By the similar procedure as the P wave incidence case,
the far-field form functions f,.¥ and f.* are defined
as follows:

MOE Zfs"(qﬁ) } 2 €,C, sinng, (11a)

HORWAOR

Z g,D, cosng.(11b)
The scattering matrix is deﬁned as
s? §*) (1+24, -2C,
S0 =\ aps  qu|” " - (12)
s» 8 2B, 1+2D,
The unitarity property of the scattering matrix S,, as
the result of energy conservation, requires that

sl +lsef =1, (13)
s=[* 4 lse" =1, (13b)
S:p* L8P 4 S’f’s’ §¥ =0, (13c)
S:p* 8PP 4 S:S' 87 =0, (13d)

The far-field form functions in Egs. (7) and (11) can be
rewritten in terms of the scattering functions as

()= |3 e, 157 ~Dycosng, (14
mix, =0 "2
(2 =2 1,
o (P) = Z g,—8¥ sinng, (14b)
mix, =0 " 2
2 2 s
P(P)= f ZO g, (- S")smn¢ (14c)

()= / Ee S“ Dcosng. (14d)

Magnitudes and phases of one of the normal modes
which make up the form functions in Eq. (14) is plotted
in Fig. 2 as a function of non-dimensionalized frequency
X, . The density of aluminum was taken as 0 = 2800

kg-m™

, and the speed of compressional and shear

wavesas ¢, =6370and ¢, =3070 m-sec”,

respectively. The density of water was also taken as o r

=1000 kg- m™, and the compressional wave speed in

“! InFig. 1 the

shape of the magnitude plot is seen to be fairly
complicated functions of the frequency, consisting of
relatively broad plateaus but punctuated by sharp
maxima and minima. Resonance scattering theory

water was taken as ¢ = 1480 m-sec

-209-



claimed that the complicated shapes of each partial
waves are due to the summation of the resonances of the
fluid cavity and the smoothly-varying background[2].
Based on resonance scattering theory, the resonances
have been obtained by subtracting the proper background
from each partial waves in the references as

f(b)res vo f vo f(b)vo' (15)

where res represents resonance and b in the parenthesis
stands for background. b may be s for the soft
background or r for the rigid background. v and &
represent p or s, appropriately. Eq. (15) can be written as

g = | 2 g (4, - 4P)cosng, (162
P
2 .
flovesrs _ €,(B, — B )sinng, (16b)
fn(b)res,sp — gn(cn _ Cib))sin n¢, (16C)
X
4
2
f"(b)res,s - gn(Dn — Dib))cos n¢, (16d)

§

In the present case, the soft background corresponding to
an empty cavity is chosen as the proper background
because the acoustical impedance of the cavity fluid is
smaller than that of the elastic (aluminum) medium. Fig.
3 (dotted curves) show the “difference” curves computed
by Eq. (16) using the soft background. The sharp peaks
in magnitudes in these figures have been considered as
the resonances of the target in the previous works[2]. We,
however, want to note that the behavior of phases
obtained by this “background subtraction” method is not
physically explainable as can be seen in Fig. 3 although
it is well known that the phase of a resonance should
shift by 7 radians as the frequency passes through the
resonance frequency. By this reason, the phases of
resonances have not usually been presented or discussed
in open literatures except some limited discussions as
already mentioned in Ref.1. Therefore, we can argue that
Eq. (16) may not correctly isolate the resonances of
targets although the magnitude plots show resonance-like
features.

3. NOVEL FORMALISM FOR ELASTIC
WAVE RESONANCE SCATTERING

The scattering functions in Eq. (12) can be expressed as

vo
vo _ als)ve o(s)* _ csyve ¢ Zin
Sn - Sn Sn - Sn ( -

m_;) (17a)

or

vo
:S(r)vo'(l/zln I/Fn) (l7b)
" M/z -1/F,
where the z ’s are acoustoelastic impedances which are
ratios of two 2 x 2 minor determinants, and F, is the
modal mechanical impedance of the fluid cavity. The
superscript § or * in the parenthesis denotes the soft

vo _ ql(ryva o(ri*
Sn —Sn Sn

or rigid background, respectively. S'*° and S,
which are the scattering functions corresponding to the
soft and rigid cylinders, respectively, can be
determined by Eq. (12) with the matrix equations for an
impenetrable soft or rigid cylinder.

Eq. (17) states that S)°

background S, Vo (or S, )Yy and the remaining

is the product of the

term S ,ES) (or S :r)‘ ) which includes resonances.
However, S,fx)* and S,f’)‘
S,fs)‘ and Sn(r)‘
which hides resonances unless it is removed. To see this,
S and Sn(r)‘

vo
o _ %~ F

are not pure resonance

terms. contain a real unit constant

may be written as

vo Vo
Zin T Zan

; == +1
zZ-F, 2 -F,
= SO 4, (18a)
and
SO = 1/z)7 -1/ F, l/z,‘:’—l/zz",‘l7
" 1/z,] -1/F, 1/z)] -1/F,
=S’Er)res,va+1’ (18b)

vo

where S (= ~1) and

S(s)vo’
vo

S(r)res Vo ( Sn

SO — 1) are defined as the resonance

scattering functions which consist purely of resonance

information of the scatterer. The unit constant in .S ,fs) )

or S "(r)~
resonances because adding a constant term to a complex
quantity changes both magnitude and phase of the
original complex quantity.

By the definition in Eq. (18), the resonance scattering
functions can be written as

should be subtracted in order to obtain the

S:s)res,pp - zll:xp _Z;f — Sfp —1= An - A:S) ,
2 ~F,  §Ww 14249

S’Es)res,ps = Zl?i _Zfrf — st —_1= Bn _B:S) ,
Zm Fn S'ES)pS BrES)

S'('s)res,sp = ZI-Z _Z;Z - S:P —_1= Cn _ Crsx) ,
3 -F, 57 o
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s5 55 58 (s)
S(x)res,ss — Zln -ZZn . Sn 11— Dn - Dn
T _ss - (s)ss - (s)
z—-F S, 1+2D,
(19)

From Eq. (19), the relationship among the expansion
coefficients, backgrounds and the resonance scattering
functions can be expressed as

A,, — A'Es) +%S:s)res,pp +A’(l:)SrSs)rm',pp’ (203)
— Rp® (5) g (s)res,ps

B, = B\ + BY S (20b)

C” - C’Es) + CH(S)S’Es)res‘sp, (200)

D,, - D'fx) +%S::)res,ss +D£S)S£S)re:’ss. (20(1)

Note that from Eq. (20) we can easily see that the
resonance scattering function always interacts with the
scattering function corresponding to the background as a
product term. In other words, Eq. (20) clearly shows that
the total scattering is not just a simple summation of the
backgrounds and resonances as expressed in Eq. (16),
but the total scattering always includes a interaction term
between the resonance and background.

In order to extract the resonances for PP case (P wave

scattering with P wave incidence), S/ —1 in Eq.
(15a) should be replaced by the corresponding resonance
scattering function S!”"*” by the same rationale in
Ref.l. For PS case (§ wave scattering with P wave

incidence), S in Eq. (14b) should be replaced by the

corresponding resonance scattering function S

As such, the resonance information of scatterers can be
obtained as follows :

fmss)res,pp(¢) — ifn(s)res,pp
n=0

2 = 1
= |—— % g, =S cosng
mx, n=0
2 = 4,-4"
= |— /?05 ———-cosng, (2la)
7ix, = 1+24,;
fogx)res,ps (¢) — an(s)res,ps
n=1
2 = .
== El g,,%S,‘,S"‘“’”: sinng
2 = 1B,-BY
= —;Z;X_EI ETSIH’W (21b)

o
(s)res., — (s)res,
fw: rexsp(¢) — ans res,sp
n=1

2 § 8 lS(s)res Sp Slnn¢
mix, n=t "2
2 1C,-CY
2 Y e, ————"—sinung (21c)
mx, = "2 CY

fdgs)rex,ss (¢) = Zf"(s)res,ss
n=0

= ’ 2 Een 1S“)’“”coanﬁ
mix, n=0
2w (S)
Zg D, cosng, 21d
mix, n=0 1 21)"’ S

Using Eq. (21), the resonance information, which are
interacting with the background as seen in Eq. (20), can
be uncovered. The only difference between Eq. (16) and
Eq. (21) is the existence of the denominator, which is
equal to the soft background scattering function. This
fact is consistent with acoustic wave resonance scattering
problem in Ref.l. However, unlike acoustic wave
scattering, the background scattering functions in the
denominators of Eq. (21) are not unitary except for n =
0 mode due to mode conversion. Therefore, as we
predicted in Ref.l, both magnitudes and phases of the
resonances of the individual normal modes computed by
Egs. (16) and (21) are generally different for elastic wave
resonance scattering, while, for acoustic wave scattering,
their magnitudes are always identical.

4. NUMERICAL ANALYSIS AND
DISCUSSION

We consider the backscattering case ( ¢ = 77 ) for PP and

8§ cases. For the case of longitudinal wave scattering
with longitudinal wave incidence (PP), mode conversion
does not occur when the normal mode number 7z = 0.
Therefore, in Fig. 3(a) we obtain identical magnitudes by
the previous [Eq. (15)] and new [Eq. (21)] methods. This

is because the denominator 1+ ZA:” , whichis S ,(,5) L

in Eq. (21a) is unitary as can easily be noticed in Nyquist
plot. However, their phases are quite different because
S;S)p ? has its own phase shift. While the phases
obtained by the previous method show physically
unexplainable behavior, the new method generates exact
7 - phase shifts through the resonances and at the anti-
resonances. For 721, as shown in Fig. 2 (b), even
magnitudes computed by the two methods are different

(s)pp
S’l

because in the denominator in Eq. (21a) is not

unitary due to mode conversion, which is clearly shown
from the trajectory of S V%
(For n21,

scattering matrix S, or S

in the complex plane.
the unitarity property applies to the
rather than the
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individual scattering function S’ or S'*’) In Fig.

2(b), the phase shifts through resonance peaks computed
by the new method are not exactly 7 radians especially
in the low frequency region. However, the phase shifts
converge to 77 radians as the frequency increases,
accordingly, mode-converted energy decreases. This is a
physically reasonable behavior because the energy
leakage due to mode conversion affects the amount of
phase shifts as numerically examined in Ref. 3.

S - S,Es)p ” was mentioned as “background removed”

by Solomon et al [4], however, it is not considered as a

(s)res,pp
S

correct statement in this paper. is actually

more reasonable “background removed” information
which consists purely of the resonances.
For the case of shear wave scattering with shear wave

incidence (SS), £ and £ are exactly the same

when the normal mode number 7 = 0[S], which implies
that the cavity fluid is not excited at all. Therefore,

S,(,s)’es’“ and the resonances are null. Fig. 8 compares

the resonances computed by the new and previous
methods for SS case, 7= 1,2, and 3 modes. As PP case,
both magnitude and phase are differently obtained by the
two methods. As PP case, the phases computed by the
new method show physically explainable behavior
compared with the previous method

For a mode converted case such as shear wave scattering
with longitudinal wave incidence (PS), we basically see
the same trend with PP or S§ case in the differences
between the isolated resonances by the two methods. The
new method generates physically explainable behavior of
the phases compared with the previous method. But, the
differences in magnitudes of the resonances are larger
than PP or SS case. This is because the magnitude of the

denominator, which is S,SJ)P ¥, in Eq. 21(b), is smaller

than unity. The detailed discussion on the mode
conversion cases will be made in a separate paper.

Due to the differences in the phases and magnitudes of
resonances of each partial wave, the total resonance
spectra computed by the two methods are quite different.
An example for PP case is shown in Fig. 4.

Although we analyzed a relatively simple example of
elastic wave scattering problems for a convenience in
this paper, we can apply the novel formalism developed
here to more complex problems such as elastic wave
scattering from cylindrical (or spherical) elastic (or fluid)
bodies in a similar manner.

5. CONCLUDING REMARKS

In this paper, a novel formalism for the isolation of
resonances from partial waves for elastic wave scattering
is proposed. The concept of the resonance scattering
function consisting purely of the resonance information,
which was originally developed for acoustic wave
scattering, has been extended to elastic wave scattering

problems. Plane compressive and shear wave scatterings
from an fluid-filled cylinder imbedded in an aluminum
matrix are numerically analyzed by utilizing the
proposed resonance scattering functions, and the isolated
resonances are compared with the results of previous
studies. For a non- mode conversion case such as
longitudinal wave scattering with longitudinal wave
incidence when the normal mode number 7= 0, both
the new and previous methods calculate identical
magnitudes. However, the new method generates exact
7t radians phase shifts through resonances and at the
anti-resonances while the previous method produces
phases which are physically unexplainable. For mode
conversion cases such as 7 21 modes, both magnitudes
and phases of the resonances of each partial wave
isolated by the two methods are different. While the
behavior of the phases obtained by the previous method
are not physically explainable, the new method computes
the phases which show reasonable behavior. In the low
frequency region, where mode-converted energy is large,
the phase shifts are close to but not exactly 7 radians.
However, as the frequency in.reases, accordingly, the
mode-converted energy becom. . smaller, the phase shifts
converge to 77 radians. Based on this fact the proposed
formalism properly extracts the resonances from
scattered waves.
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FIG. 3 Comparison of isolated resonances

by the new method(solid) and RST(dotted) for
PP case

FIG. 4 Total resonance spectra by the new
method (solid) and RST (dotted) for PP case



