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Input signal reconstruction for nonlinear systems

using iterative learning procedures
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ABSTRACT

This paper demonstrates the reconstruction of input signals from only the measured signal for the simulation and
endurance test of automobiles. The aim of this research is concerned with input signal reconstruction using various
iterative learning algorithm under the condition of system characteristics. From a linear to nonlinear systems which
provides the output signals are estimated in this algorithm which is based on the frequency domain. Our concerns
are that the algorithm can assure an acceptable stability and convergence compared to the ordinary iterative
learning algorithm. As a practical application, a % car model with nonlinear damper system is used to verify the
restoration of input signal especially with a modified iterative learning algorithm.

1. INTRODUCTION

When applying laboratory simulation testing, the test
engineer is presented with the problem of reconstructing
the service environment in the test laboratory from a set
of field measurements (road test data). Since the true
configuration of the dynamic behaviour of structure under
test (to say ‘the system) is not fully identifiable, the
reconstruction relies on certain assumptions which must
be made about the system. Using a separable set of
signals fed to the system, the system is tested to yield an
estimate of its linear characteristics, i.e., its frequency
response function [1]. This linearly assumed system’s
frequency response function (hereafter ‘estimate of
system’) is to be used to reconstruct the true excitation in
the service environment by comparing the signals
measured in the test of laboratory with those from the
field measurements [2], [3].

When the system under consideration is purely linear, the
iterative learning procedure is only affected by the
accuracy of the estimated frequency response function of
the system. However, in practical situations, several types
of nonlinearity exist in any mechanical structures, which
are usually poorly known. Also these nonlinearities
increase with wear and tear, and change from component
to component [4], [5], (6], [7]-

The aim of this research is concerned with input signal
reconstruction using various iterative learning algorithm
under the condition of nonlinear system characteristics.
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Our concerns are that the inverse can exist and stable in
applying to the reconstruction.

The underlying theoretical concerns are the adequacy of
various models of the nonlinear system, particularly by
local linear models, with respect to the convergence of
these iterative learning algorithms.

2. Iterative learning algorithm for input
estimation
In order to understand how the iterative learning
algorithm can be applied to simulator control signal
generation, a brief review of linear system analysis and its
stability condition for the iterative input estimation will
help. The information that is needed to construct the true
input signal, which is directly related to the control signal,
is the relationship between the input and output of a linear
system. Suppose an unknown signal x,(¢) is acting on any
linear system j(r) producing an output signal y.?)

(desired output signal) as shown in the following figure;

Linear Time
Invariant (LTI)
system
input signal Output signal
— D)
x, Y4

Figure 2.1 Acquisition of desired signal

The problem addressed here is to estimate the unknown
input signal from the output and the estimate of the
system is linear response. This input reconstruction is
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achieved in an iterative manner that reducing the error
between the desired output and test output obtained from
arbitrarily selected input signal excitation.

To be more specific, in the first stage, the system is driven
by a test input x_ to give test output y,, then the system’s
frequency response is calculated as,

5,.()
5.

Using the frequency response obtained from equation
(2.1), the first input x,, is calculated in the frequency
domain as

G(f)= @.n

x =27, (22

ol R

where Y; is the desired output signal in frequency
domain and & is a gain factor (constant).

Hence, the above relationship may be expressed in
general form at the i-th iteration step

X, =X +%E,
G

i+l

2.3)
and the error in each frequency at every iteration step will
be,

E(f)=Y,(NH+G(f)-X,(f) 24)

where G(f) is the true frequency response of the system.
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Figure 2.2 Iterative learning process for input signal
reconstruction

: d,.(n)=a[

3. Input estimation for nonlinear system
Actuator and sensor nonlinearities are among the key

factors limiting the performance of input signal
reconstruction. In this section, we applied the iterative
learning algorithm to the systems which have
nonlinearities in their nature.

3.1 Stability of the iterative learning algorithm
considering the nonlinearity of a system

This section considers the stability of iterative learning
algorithm when the system is non-linear. By representing
the degree of non-linearity by a single parameter, the
region of stability relating the degree of non-linearity and
gain factor can be investigated.

The following figure illustrates the relationship between
the signals for an iterative learning algorithm in which x
denotes the input signal, y is the output of a certain non-
linear system, d is the desired signal (field measured
output of the non-linear system), and e represents the
error signal between the desired and output signals. As a
general non-linear expression, we assume the non-linear
behaviour of the unknown system depends on the cubed
term of input signal by which the degree of non-linearity
can be expressed by a constant multiplier (denoted by
&) of the cubed term.

y=x+8x

Unknown (nonlinsar) system

Figure 3.1 Signals and non-linear system used in the
iterative learning procedure

Using the relationship of Figure 3.1, the adaptation
equation takes the form of

%, (M =x(n)+ae(n), ie G=1 3.1
in which the error is written as,
e,(n)=d(n)—x,(n)-5x)(n) (3.2
Hence,
G =x(m)-a(x(n)+6x ()-dm) (3
Let x,,+0x,’ =d, and substituting X, from both

side of (3.3) becomes

(xm(n)- x,,,) = (x,(n) —xop,)-a (x,(n) +8x} () - %, ~ éxop,’)(3'4)
Normailsing the input signal and convergence gain factor
x(n)=x(n)- Xopt and

X, (n) + 5x|3 (n) - xopl - axop'g to make
xi (n) - xapl
equation (3.4) as

Fa(n)= (1 - &;(n))ii(") (3.5)
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Note that the normalised adaptation can be written as

an)=a|1+6 Bz, ),
l xi(n)"xapl

From this, if x(n)=0, then
@.(n) =a[1+ax ’]

opt

(3.6)

and if x(n)=x,+A, AQx, , then
#(n)=(x,+A) O, +3Ax,> , so that the

normalised convergence coefficient becomes

an=a [1 + 35xop,2] 3.7
From this, the algorithm becomes unstable when
a[1+36x," |>1 (3.8)

This equation is exact if x and d are slow-varying dc
levels and is true on average if x and d are randomly

varying and the mean square value of Xopt is used in

equation (3.8). Thus, the upper limit of the gain factor for
stable convergence becomes

1 (3.9)
I+ 35x,,1,,,2

As an example, if we choose & to be 1.0 and xo‘,,2 is

taken to be the variance of the signal and assumed to be
unity, then the algorithm retains stable for « <0.25 but
when @ istakenas 0.5 and & =1.0, then the algorithm
is driven into the instable condition.

We also notice that the coherence is degraded for a fixed
value of & (& =1), as the variance of the input signal,

2 .
o, , increases.

Changes of coherence (8= 1}

10 0

ariance of input signal [cf] Frequency [Hz}

Figure 3.2 Change of coherence varying the variance of
input with fixed § (5=1)

It is thus intuitive that by monitoring the coherence
function we can monitor the degree of non-linearity in the
system experienced by the iterative learning algorithm [2].
In the next Section the form of the coherence function is
derived for a general memoryless nonlinearity.

3.2 Analytical form of coherence function

Following figure illustrates an input-output process with
parallel liner and nonlinear co-existent system.

yr=hxihx+

Non-linear

=x
ol Linear, G ! Y ?

Figure 3.3 A simple parallel non-linear system
The input output relationship can be expressed as
y(m) =y (n)+y,(n)
where 5 my='Y hir)xn-7)

=0

(3.10)

and

© [ERO L A0 T, =0

yz(n)=z 2 2 Z k(7,7 T )x(n=7)x(0—17,) - X(n~T,)

i=2 =D I w0
For simple example, however, we have selected the
nonlinear system which is represented as

1) =6, {x(m)}’ + 6, {x(m)}’ +e(x(m)", k>3(.11)
as such the nonlinear equation given in (3.11) limits the
higher order nonlinearity up to 3 order and the
contributions beyond which are considered to be trivial.

The coherence between the input and output is defined to
be

s, |

y 2_ I xy (3.12)
78,8,

where

S, =E{X'r}

—E{X (541} G-
=E{X'}}+E{X'L,}

and

8, =E{(+L) (1 + 1)} (3.14)

=E{R 1)+ E(R Y+ E{Rr )+ E{r Y}
Since we have assumed that the general non-linear system
can be expressed by the relationship given in equation
(3.11), the cross spectral density can be expressed using
the rejationship by the Bussgang process as {9], [10]
_ 2
S, =8, +36,0.8,
The equation (3.12) becomes

(3.15)
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|SX}’| * S“yz |2
+ S)’z)ﬁ + S)’z)’z )

(3.16)

B Sxx S o T S. »n
IS‘?I Iz

P 4] .
Sxx S}’l)’l

in which the equality holds when §, =0. The inequality

relationship given in (3.16) implies that the coherence of
_ the nonlinear system is always less than that of the linear

system.

For further detailed non-linear system identification, there

can be various ways such as the Higher Order Spectra (e.g.

Volterra series expansion) [11], [12], [13] that can deal
with the stability of the iterative learning algorithm. In
this study, however, the degree of non-linearity is
monitored by simple parameter as the cost of iterative
leamning procedure escalates by implementing further
complicated non-linear system identification.

3.3 Further modification of iterative learning process
Apart from the ordinary iterative learning process
considered so far, we have introduced a modified iterative
leaming (IL) process, which takes into account the error
signal and system characteristics at each iteration step, to
overcome problems encountered in simulating the control
of nonlinear systems. This modified IL process has three
components.

3.3.1 Estimation using adaptive gain factor application
In the ordinary IL process, the selection of gain factor
becomes crucial as the magnitude effects on the stability
of the IL process. However, the gain factor is only
selected empirically, which may cause unexpected
problems in the algorithm if the system is nonlinear as
described above. To avoid this, one could let the gain
factor change its values in accordance of the coherence
function in each frequency. The relationship given
equation (3.16) implies that the gain factor can be selected
following the change of coherence function in each
iteration of the algorithm. To be more specific, we modify
the gain factor to tackle the stability of the algorithm in
view of the coherence as

Cpos =@y 7, 0<fixed value @, <1 3.17)

2
where 2 _ IS,,I denotes the coherence function.

¥ 8.S,
By considering the status of input and output signal in
each iteration (using the coherence function), this
equation then suppresses the instability caused by the
improperly selected gain factor automatically.

3.3.2 Instantaneous frequency response function
Instead of using the identified frequency response of

system (denoted G ) under test expressed in equation
(2.4), the input signal reconstruction is given

a
X=X, +E(Yd -T)

where the estimate of the frequency response function is
estimated from the current input and output signals -
depending on the status of the phase response of the
system in each iteration- using coherence function in each
iteration such that

(3.18)

G'_ = leyi
lexl
For a nonlinear system, the global estimation of frequency
response is not always valid as the estimation is based on
the linear assumption. Thus, it is recommended to employ
the modified frequency response estimation for the input
signal reconstruction, which is called ‘instantaneous
frequency response’ estimator.
This frequency response application is used to ensure the
rapid convergence of error function and stability in its
convergence. Firstly, the merit of this estimation can be
said that since the gain factor is varying with the status of

the input and output signals in each iteration, }’fy

(3.19)

provides an additional gain factor to reduce the error
between (¥, -Y). Secondly, the instantaneous linearity

can be achieved when we select the local gradient for
nonlinear case.

3.3.3 Application of regularishtion for inversion of
frequency response function

Regularisation is used to ensure numerical stability in the
inverse of the frequency response function, i.e.

G=5*h
S

g-3

in which the small constant ﬂ is introduced to ensure the

numerical instability of G when it is inverted.
Simulations on the inversion of frequency response
function on input signal reconstruction have been
performed with;

(3.20)

Sample length (N) : 8192 samples

Input signal : pink noise (with crx2 =1.0)

Sampling frequency (f;) : 200 Hz

Window : Hanning 256 segments

Averaging : 50 % overlapping

Number of iterations : 10

System : 8" order Butterworth filter (Cut-off 50 Hz)
(memoryless)

- 858 -



Input signal

Input sigrat (<)

7000 3000 3060 _ 4000
Time index

8000 800G 7000 6040

System

o

-as

ey pat

°

[}
LIRS B0 53 ¢b 3I* SN 4

= EX) 0 X3 1
Rest pan

Output signal

Output signst (v,)

1060 2000

3000 4000 6006 6000 7600 8000
Tima indmx

Figure 3.4 Input signal, low pass filter system
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Figure 3.5 Magnitude and phase of the system and
spectral density of input and out signal

As shown in Figure 3.5, the system is a kind of low pass
filter which results the output of the system loses its
spectral characteristics in high frequency region. In this
case, when we invert the frequency response function, the

numerical instability occurs.

To compare the performance of the ordinary and modified
method in IL process, the term “error” used in this study
is represented by MSE, which is defined as

MSE=Y(3,-7,)

where Y, is the measured signal in time domain and

(321)

Ya, is the i-th output signal respectively.

These are demonstrated in the following figures.
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Figure 3.6 Results of input signal reconstruction from
three different methods, (a) & (b) : restored signal and
error from ordinary frequency response function
inversion, (c) & (d) : restored signal and error from
regularisation (from inversion of pre-whitened frequency
response function)

The error (b) of Figure 3.6 clearly demonstrates the
numerical instability of the IL process which use only the
inversion of the estimated frequency response function as

Xy =X+ F, (3.22)
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whereas the IL process with some constant addition
(prewhitening)
X=X, +————.F, (3.23)
G(+o°l)
The amount of constant addition is suggested by the
Percentage of Pre-Whitening (PPW) and is given
(1, (0) is the auto correlation of the output signal)

0_2

r,(0)
and normally, takes 0.50 5% [14].

PPW = ——x100 (3.24)

4. Input estimation for dynamic system with
nonlinearity

This section deals with a practical problem of input signal
reconstruction by taking a simplified car model with
piece-wise nonlinear damper system. The input signal to
be restored is the pink noise signal used in previous
sections. A brief description of the nonlinear system and
the comparison of the input signal construction by the
ordinary IL process and modified process are described.

4.1 Input, system, output and analysis of dynamic
system

For a practical application of 1/4 car model, nonlinear
dynamic system configuration and input estimation
processes are given as following;

Key parameters;

M=50kg, c=200N/m/sec, k=1800N/m
(£,=0.955 Hz, ¢ =0.333)
Nonlinear damping coefficients :
right graph of Figure 4.1)

Sample length (N) : 8192
Sampling frequency (f;) : 200 Hz
Window : Hanning 256 segments
Averaging : 50 % overlapping
Fixed gain factor (&, ) : 0.5
Number of iterations : 10

¢;=300, ¢,=100 (see

/F-ﬁ‘(?-ir)

G-8)

Feoy (-8

Figure 4.1 Car suspension system (non-linear damper)

The dynamic behaviour of this system becomes
My =—k(y - x)—c(y-X)
wheny-x20, c=¢ 4.1)

wheny-x<0, c=g¢,

In the simulation based on the above equation (4.1), the
4™ order Runge-Kutta method has been used to solve the
ordinary differential equation. The nonlinear damping
coefficient takes either ¢, or ¢, depending on the sign of
the relative velocity between the input (road profile) and
that of the car body. In this manner, the damping term
takes the partial linear behaviour depending on the
relative velocity between the input and output.

Figure 4.2 depicts signals which represent simple ‘vehicle
with nonlinear damper system’ running over spatially
homogeneous rough ground.

Input signal

Spue wigrw) (g,)

Output from non-linear damper

Sutbut sigrel (v

.
5"
-

-2

700G 2060 3000 _ 4000 __86ao 8080 7000  enoo
Tire tactesc

Figure 4.2 Input signal, output signals from non-linear
damper car model

Simulation steps;

Step 1 : Any arbitrarily selected random white noise
(x.) is selected to excite the nonlinear car model given in
(4.1) to obtain the output of the system (y.)

Step 2 : The linearly assumed frequency response
function of the system (G) is estimated from the input
and output.

Step 3 : The coherence function is estimated to use a
modified gain factor for the iteration as such
Cpoa =0y Vs @y =1

Step 4 : The spectral differences between the output of
the system and the desired output (ys) as such g =y, -v, .

Step 5 : Estimation of frequency response function G is
done for modified IL process.
Step 6 : A new input signal is then calculated as such

a
X "= Xf + 5 El (Where a becomes @ or @i

depending on the method selected).
Step 7 : Check the g with the threshold value.

Step 8 : If the error g, is not satisfactory, use the new
input to excite the system and repeat from the step 3.
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4.2 Results -nonlinear damper car model-
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Figure 4.3 Results of input signal reconstruction from two
different methods,(a) & (b) : restored input signal and
errors in each iteration from standard iterative learning
algorithm, (c) & (d) @ from modified gain factor
iterative learning algorithm.

As can be seen in Figure 4.3, for the nonlinear case, the
input signal reconstruction by two different IL process
clearly demonstrate the important role of unknown
system’s FRF estimation and gain factor selection.

5. Discussions and future development

The input signal reconstruction using the iterative
learning algorithm has been investigated for linear and
nonlinear systems. Some of conclusions and further
development parts are listed below.
5.1 Discussions
e For linear case, the iterative learning algorithm
yields satisfactory and robust results.
e For the simplified car model, using the
instantaneous frequency response function, adaptive
gain factor and the prewhitening for the inversion
stability, the input signal reconstruction has been

achieved more effectively, which leaves the
following aspects to be further investigated.
5.2 Future development
e A full scale on-site experiment is requires to
determine the validity of this process for the real
system.
e There is a more general question as to whether an
inverse for these nonlinear systems exist and whether
it is unique.
¢ A nonlinear system identification could provide a
more accurate input signal reconstruction, which may
be achieved using higher order spectra, for example.
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