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A study of integral equations for the analysis of scattered acoustic field
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ABSTRACT

This paper deals with a fundamental and classical scattering problem by a finite strip. For the analysis of
scattered acoustic field, a “single” integral equation is derived. Firstly, the complexity by considering the
effect of the mean flow is alleviated by the introduction of Prandtl-Glauert coordinate and the new dependent
variable. Secondly, the difficulty of solving the resultant strongly-coupled integral equations which always
appear in this kind of 3-part mixed boundary value problem is solved by observing some good properties of
the functions in complex domain and manipulating the equations and variables for the use of those properties.
The solution can be obtained asymptotically in terms of gamma function and Whittaker function. One aim of
this study is the improvement of methodology for the research using integral equations. The other is the basic
understanding of scattering by a finite strip related to the linear cascade model of rotating fan blades.

1. Introduction

The flow and sound generated by rotating blades
is one of the most important as well as difficult
problems in aeroacoustics. The importance is due to
the diverse application of rotating bodies in many
industrial areas such as cooling fans, helicopter
rotors, blowers, compressors and so on. And the
difficulty is mainly because the operation is rotating
motion at almost fixed position. Rotating blades can
be simplified by a linear cascade model assuming
that the blade is not cambered and the hub-tip ratio
of the fan is close enough to unity so that curvature
effects can be neglected. Thus, the rotating blades
through a stationary convected disturbance can be
equivalently described by the linear cascade
encountering a gust with mean flow parallel to each
blade [1]. The sound is calculated by solving the
linearized acoustic-vorticity equations.

One remarkable feature of the mathematical
description by means of partial differential
equations (PDE) is the comparative ease with which
solutions can be obtained for certain geometrical
shapes by the method of separation of variables. In
contrast, considerable difficuity is usually
encountered in finding solutions for shapes not
covered by the method of separation of variables.

A strip, an element of a linear cascade, is a
simple shape but the solution cannot be obtained by
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usual methods for PDE because this finite strip
yields a 3-part mixed boundary value problem
(MBVP). When some parts of the boundary are
prescribed by function itself and the rests of the
boundary are prescribed by the normal derivative of
the function, the problem is called a mixed
boundary value problem. There are a few available
methods (Wiener-Hopf, Riemann-Hilbert, Dual
integral equation) for mixed boundary value
problems. But the resultant formulas for 3-part
MBVP are strongly coupled integral equations at
best. Therefore, the author provides a single integral
equation by decoupling these simultaneous
equations. The method used in this paper is Wiener-
Hopf method using the property of analytic
continuation in complex domain. In section 2, some
mathematical preliminaries are stated shortly
without the details [1-4]. In section 3, the governing
equation and boundary conditions are converted to
more manageable form for the further work in
complex domain. In section 4, two simultaneous
integral equations are established by sum
decomposition of Wiener-Hopf method. These
equations are so infricate that a single one is derived
by mathematical manipulations. Discussion about
the solution and concluding remarks are followed in
section 5.
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2. Preliminaries

2.1. Splitting Theorem [1]

Every velocity vector field u# can be
decomposed into solenoidal(zero divergence) and
irrotational(zero curl) parts so that the pressure
fluctuations are determined solely by the
irrotational part.

u=u+u,, V-uy=Vxu,=0, Du =0,

poDity ==Vp, (pycy) ' Dp=-V-u,

Since the irrotational vector u, is the part of the

velocity associated with the pressure fluctuation, it
is called the acoustical particle velocity. And since
the vorticity is determined solely by the solenoidal

velocity u,, this quantity is called the vortical
velocity.

2.2. Generalized Fourier Transform [2]
If f{x) vanishes for x<0 and if l f (x)l < Ae”™ as

x goes to plus infinity for some constant A>0, then
its generalized Fourier transform is defined as

F.(l)= j f (x)e”"dx= I f(x)e—lm(ﬂ)x SReA)x g
0 0

which exists and is analytic for satisfies Im(1) >« .
If f{x) vanishes for x>0, and if [ f (x)| <Be® asx

goes to minus infinity for some constant 8>0, then
its generalized Fourier transform is also defined as

0 0
F ()= f F(x)e*dx = j' f(x)e MBI READ)S g

—0 —0

which exists and is analytic for Im(1) < # . Since
and S
satisfying « > B, there exists a region where both
F.(A) and F.(A)
bounded above by « and below by S is called
an analytic strip. All the “Plus” sign means that the
functions are analytic in the whole upper region
bounded below by the imaginary part of the
infimum of the analytic strip, and the “minus”
functions are analytic in the whole lower region
bounded above by the imaginary part of the
supremum of the analytic strip. This analytic strip

enables to find the solution with insufficient
number of equations.

it is always possible to choose «

are analytic. This strip

2.3. Wiener-Hopf method [3,4]

In some linear partial differential equations, we
cannot take a Fourier transform because the
boundary data type changes along the boundary.
The Wiener-Hopf method is to take a Fourier
transform anyway and allow part of the data to be
“missing”. Solving the problem using Liouville’s
theorem, we determine the “missing” data and the
solution simultaneously. This method is applicable
to linear partial differential equations on an infinite
interval that have different types of boundary data
on different parts of the interval.

Among the several techniques in this method,
sum decomposition technique which separates a
function to be analytic in each region is most
important technique. Sum decomposition is not
unique since we can add and subtract any
polynomial (which is analytic everywhere) to both
sides. Here, the basic sum decomposition technique
is introduced.

Suppose F(A) is analytic in the strip
a<Im(A)<p and F=0(17) as [4|-»>® in

the strip, for some & > 0. Then for any point A
within the strip, Cauchy’s integral formula may be
used to give F(A)=(27i)"' ch(()(g—/l)_ldg
evaluated round the closed contour
C=L+FA+L,+F shown in the diagram, lying
within the strip.

Im(3)
L, “
L1
P, , X 1p,
Al
; a0 LI L,
-N N Re(l)

As ‘N’ goes to plus infinity, the contribution by the
paths P; and P, tend to zero, since the integrand has

absolute value of order § % Thus
F(A) = F,(A)+ F.(A)

1 (oria, F($) 1 e+ F(O)
=L "{.7"4*2—,,;&.»5, g'_—g;{dg
where a < <Im(4)< B < B . The first integral
F, exists and is analytic for all s such that
Im(A) >, and the path of integration can be
shifted so that «; is arbitrarily close to a .
Similarly, the second integral F_ exists and is
analytic for all Im(A) < f3, arbitrarily close to f3.

This basic decomposition result is at the heart of the
Wiener-Hopf method.
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3. Problem definition
3.1. Physical Domain
A thin blade of length ‘7’ is encountering a small
gust of u in the uniform flow U parallel to x-
axis, as shown in figure. It is supposed that the
vortical velocity field u, is specified upstream of

the blade. Due to the linearity of the problem, it is
sufficient to calculate the flow field generated by a
single harmonic component

cos uexpli(wt —k(x+cot uy)/ M))
u_ =
—sin pexpli(wt - k(x+cot uy)/ M)]
where M =U/c, and k=w/c,.

It is convenient to explicitly separate out the
velocity by putting u =u_ +u, where u, is the
scattered velocity. Then, since #_ is solenoidal
Vou,=0 & Du,=0
where D, =9, +Ud,_, the scattered velocity u,

and satisfies

satisfies p,Du, =-Vp , (p,c)'D,p=-V-u, .
These two equations are unified into a convective
wave equation
Vzp—Dfp =0 or Vz(ps —D,z(ps =0 where
p=-p Dy, and u =V,
Since the flow is inviscid, we impose the

boundary condition that the mnormal velocity
vanishes at the surface of the blade.

u-é,=u,+u,)€=0
i(wt—kx/M)
> d,0, o

It is natural that the velocity potential also has the
time factor same as incident gust, scattered
potential can be expressed as
@.(x,y,t)=(x,y)e” . Then, the governing
equation and the corresponding boundary condition
can be rewritten as

=-u, -6 =sinye

(1-M)Yp+dp-2ikMp+k'p=0 (1)

x y

ay(P| 0=sin/1 e ™M for 0<x<l 2)
=

3.2. Prandtl-Glauert Coordinate
In order to transform this problem into an

equivalent (and somewhat more familiar)
stationary-medium problem, we introduce the
dimensionless Prandlt-Glauert coordinates and the
new dependent variable

E=x/1, n=N1-M*y/l,
B(E,1) = o(x,y)e™™ where x=kl/(1-M?).

Then the governing equation and the boundary
conditions become

(6§ +6; +;(2)¢=0 3)
8,,¢ln=0 = (1—M2)—1/215in‘u ei(ZM—-llM)Kg
for0< ¢ <1 @

Kk is assumed to have a positive imaginary part
K,, that is, Kk =k, +ix, for the use of Wiener-
Hopf method.

3.3 Complex Domain
The potential function is transformed by using
generalized Fourier fransform.

o(Am)= [ g(&me*ds =

1
iy
el eil fle-i
L (A,1m)
e ®°(4,1)

pret [Tt g meiag

=<D-(/1,77)+{ }+e”¢+(i,n)

&)

Here, “plus” function is analytic for Im(£) > -k,
and “minus” function is analytic for Im(¢)<x,.
Therefore ®(&) is
-k, <Im(¢) < x,.
Now, the Fourier transform of Eq.(3) gives a
general solution

() AP + 4,(2)e P, =0
B (Ae P + B (AP, p<0
where y(1)=(1% -x*)"*.

The real part of y(A) is always positive when

analytic in the strip of

the imaginary part of 4 is in —x, <Im(1) <x,.
Thus, 4, and B, should be zero not to diverge at
infinity. And, since the normal derivatives should
be continuous at 77 =0, the solution is simplified
to have the only one function to be determined as

AL e-r(l)ﬂ , 7720
o(a,m={ AN (g
—AAEDT | n<0

-1018-



4. Integral Equation Formulation

Matching the Eq.(5) and Eq.(6) at =0 using the
boundary conditions, 2-equations for 4-unknowns
are constructed.

A _ il

(4, 0)+d~ii)—l+ei‘¢>;(/l,0)={ ()" D, (A)
A=2 —y(A)D;(4)

N

where d=1(1-M*)"?siny, A, =(1/M-2M)x.
Since this system of equations cannot be solved by
the algebra level, the complex analysis for 2-more
equation is required. This is the idea of Wiener-
Hopf method. (1) is decomposed into each
analytic region by (1) =7, (A)y_(A) =(A+x)"*(A-)"2.
After dividing the first equation of Eq.(7) by
ey, (1) and the second equation of Eq.(7) by
7_(4), the terms to be “sum decomposed” are
remained. Two equations listed below are obtained
by sum decomposition technique and the
Liouville’s theorem. The functions in the square-
bracket become analytic in upper and lower
half plane by the integration introduced in
section 2.3,

©,(4), de [ 11 )
A (A=A 7.(A) r.(h) (8.1)
bde™t 1 el
{(4—4‘,) 7.(2) 7.4 l‘
D (A) d
r.(A)  (A-A4)y.(A) (8.2)
l: de'3=%) eMCD;(/l):‘ _
+ +
A=)y (A y.(A)
where
ot . 1 ¢ S
[S(/l)]_=~ﬁ4:fm i—aida’[s(l)]+=7%‘£a ;(j%da

and -x, <a<Im(A) <b<min(l/M - 2M ,Dx,.

For M<0.5, min(1/M-2M,1)=1, so we can
choose ‘¢’ such that c=b=—-a(c>0) and let
a=-a in the integrand of the Eq.(8.1) and
A=-A in the Eq.(8.2). Using the property of
v.(-a)=y (a) , interchanging the path of
integration, adding and subtracting two equations
gives a single integral equation. This is the key
result whose detail procedure cannot be shown due
to its length.

i 1(3) +ie eia %) 2(0‘)

a=R(A) (9
\/ A-K Zm Hie a+/?.\/ @ 6

i )
where ©,,(1)= {m (D)2 d. (—A)}+d{/1 X Z%},
Im(-4)<c<x, and R(@:Ji_.

V2 (A=)
5. Concluding Remark

A single integral equation is derived for a
scattering by a finite strip. And the solution can be
obtained by using the asymptotic evaluation of
integral of the form

_ J: e’ O )
e g+ A JVa+ rc
where Im(-4) <c <k, .

We can write
e(@)=(a~p)™" f(a)
=(a~p)"" {f (@) +@-9)f(g)+.}

where 7 =-1,0,1,2,... and f(a) can be expanded

as a Taylor series about some ‘q’.

Then 1~2e'“**9i"[ ()W, (2)]

where z =—-i{(A+k)

and W,_y,(2)=T(n +l)em A —(n+1)/2, 2(2)

where I'(z) isa gamma function and

Whittaker function.

It is possible to improve the treatment of the
equation by using more suitable types of asymptotic
expansions. And also the local behavior for large or
small wave numbers will be investigated.

W,;(2) isa
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